Synthesizing
Regular Expressions for
Introductory Automata Assignments

Mina Lee, Sunbeom So, and Hakjoo Oh

Programming Research Laboratory
Korea University

31 October 2016
GPCE 2016 @ Amsterdam, Netherlands

Strings have exactly one pair of consecutive 0s. (2={0,1})

Give it a try!

Strings have exactly one pair of consecutive 0s. (2={0,1})

Positive Example

00
1001
010010
1011001110

Negative Example
01
11
000
00100

Strings have exactly one pair of consecutive 0s. (2={0,1})

Positive Example

00
1001

J01901110 Alpha
=) m) (071)*00(10?)*

Negative Example
| Regex

11
000
00100

Motivation

To help the students who learn REs

Motivation

Strings have exactly one pair of consecutive 0s. (2={0,1})

e Most students : “l don’t know how to start.”

Positive Example

00
1001

010010
1011001110 - Alpha » (0?1)*00(10?)*

Negative Example
| Regex

11
000
00100

Motivation

Strings have exactly one pair of consecutive 0s. (2={0,1})

* Some students : “Is there compact any solution?”

Students
1°(01)*0017(10)*1"

4

(0?1)*00(10?)*

AlphaRegex

Another example 1

The number of Os is divisible by 3. (2={0,1})

Positive Example

1
11
111
000
000000
01010
0110110

Negative Example

0

00

100
010
001

0000
00000
0000000

Another example 1

The number of Os is divisible by 3. (2={0,1})

Positive Example

1
11
111
000
000000

il ' Alpha
Negative Example Regex

0

00

100
010
001

0000
00000
0000000

M) (1+01*01%0)*

Another example 2

0 and 1 alternate. (2={0,1})

Positive Example

0
1

01
10
101
010
1010
0101
10101

Negative Example

00
11
011
001
110
1001
101101
010010

Another example 2

0 and 1 alternate. (2={0,1})

Positive Example

0
1

01
10
101
010

1010 Alpha

10101 -
Negative Example Regex

00
11

011
001
110
1001
101101
010010

m) 12(01)*0?

Contribution

* Efficient Synthesis Algorithms for REs.
- 6.7 seconds on average.

* Provide AlphaRegex, publicly available.
- http://prl.korea.ac.kr/AlphaRegex

Demo Page

Results

Positive Examples @ Negative Examples @
E Y + Ente +
00 01
1001 11
010010 000

1011001110 00100

RE in Automata Class

*

e—>a€X|e|D|le+ex|er-ex]e

 Assume 2={0,1}.

RE Synthesis Goal

RE Synthesis Goal

RE Synthesis Goal

Accept Every Positive Example
Solution Area

Reject Every Negative Example

17

Basic Search Algorithm

 Brute force search

- Start from the initial hole(Ll).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

Basic Search Algorithm

[

0

 Brute force search

- Start from the initial hole(Ll).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

Basic Search Algorithm

/

0 1

 Brute force search

- Start from the initial hole(Ll).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

Basic Search Algorithm

/

0 1 €

 Brute force search

- Start from the initial hole(Ll).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

Basic Search Algorithm

+

 Brute force search

- Start from the initial hole(Ll).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

0

Basic Search Algorithm

///

1 €

O+

 Brute force search

—Z N

- Start from the initial hole(

).

- Enumerate every possible regular expressions.

- Check consistency with examples for each expression.

Challenge

—/

Our Pruning Techniques

1. Identifying Semantically Equivalent States
2. Over Approximations
3. Under Approximations

4. Identifying Redundant States

1. Equivalent states

O+

1. Equivalent states

o+ |[*

1. Equivalent states

\

o+ |[*

O+1+

7 \\\

0+0+0 0+0+1 O+0+¢

1. Equivalent states

O+¢ o o+ |*

.

O+1+

- /W\ =

0+0+0 0+0+1 O0+0+¢ . -
SINZIN /N

1. Equivalent states

 How can we identify semantically equivalent

states?
- Semantics-preserving transformation rules.

eg. et+e -> ¢, (e*)* -> e*

2. Over Approximations

Prune out the state guaranteed to
reject some positive examples.
I

2. Over Approximations
Prune out the state guaranteed to
reject some positive examples.

0 is in the positive examples ‘

10 1e1 lee leg l1e(| [+| |[) 1e(| |o] |) 1| |*

2. Over Approximations
Prune out the state guaranteed to
reject some positive examples.

0 is in the positive examples

// .\\.

35

2. Over Approximations
Prune out the state guaranteed to
reject some positive examples.

0 is in the positive examples

// .\\.

36

2. Over Approximations
Prune out the state guaranteed to
reject some positive examples.

 How can we over approximate the states?

1. Replace all holes(L1) with 2*(= (0+1)%).

2. Check if it can accept every positive example.

3. Under Approximations

Prune out the state guaranteed to
accept some negative examples.
I

3. Under Approximations

Prune out the state guaranteed to
accept some negative examples.
0 is in the negative examples

///m\\

0+0 0+1 O+¢

=

0+0+ O+1+

3. Under Approximations

Prune out the state guaranteed to
accept some negative examples.
0 is in the negative examples

///0+\\

0+0 0+1 O+¢

=

0+0+ O+1+

40

3. Under Approximations

Prune out the state guaranteed to
accept some negative examples.
0 is in the negative examples

///m\

0+0 0+1 O+¢

=

0+0+ O+1+

41

3. Under Approximations
Prune out the state guaranteed to

* How can we under approximate the states?

1. Replace all holes(Ll) with 2.

2. Check if it accepts any negative examples.

4. Redundant States

Prune out the state
if the state has redundant symbols.

4. Redundant States

Prune out the state
if the state has redundant symbols.

1 is a prefix of positive examples

0*1e

0*1e0 0*1lel O*lee 0*legp

O*1e(| |+

) 0*1e(

)

0*1e

4. Redundant States

Prune out the state
if the state has redundant symbols.

1 is a prefix of positive examples *

0*1e0 0*1el O*lee 0O*leg 0O*1e(

+L)

0*1e(

°l)

0*1e

45

4. Redundant States

Prune out the state
if the state has redundant symbols.

1 is a prefix of positive examples *

0*1e0 0*1el O*lee 0O*leg 0O*1e(

+[)

0*1e(

°l)

0*1e

46

4. Redundant States

* How can we identify redundant states?

- Identify redundant unions and closures.

Decompose unions Unroll closures
eg. 0+ -> {0, (1} eg. 0*[] -> {000* 1}

N '4

Accept no positive example?

N? ‘es

No redundant Redundant

47

Completeness

If there exists a solution for the given examples,

it will be eventually found.

Evaluation

25 problems from textbooks.

* 3 levels of difficulty.

- Easy, Normal, Hard

* Positive, Negative examples are < 10 for each
problem, respectively.

Evaluation

Average
(Time : sec)

6.7 >6599.3 284.8

Conducted on an Ubuntu machine with Intel Xeon CPU E5-2630 (2.40GHz).

* Average runtime : 6.7 sec

- Worst case < 1 min

50

Evaluation

Average
(Time : sec)

6.7 >6599.3 284.8

Conducted on an Ubuntu machine with Intel Xeon CPU E5-2630 (2.40GHz).

e Exhaustive Search Only (All-Off)

-50f25: > 10,000 sec

51

Evaluation

Average
(Time : sec) —

6.7 >6599.3 284.8

Conducted on an Ubuntu machine with Intel Xeon CPU E5-2630 (2.40GHz).

* Effectiveness
1. Over- and Under Approximations (X 42.5 1‘)
2. Identifying Equivalent states (X 4.1 1*)
3. Identifying Redundant states (X 2.8 1)

52

Conclusion

* RE synthesizer for automata class
* Exhaustive search with simple pruning

e Complete : Guaranteed to find a solution

Thank you !

