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Abstract—We present VERISMART, a highly precise verifier
for ensuring arithmetic safety of Ethereum smart contracts.
Writing safe smart contracts without unintended behavior is
critically important because smart contracts are immutable and
even a single flaw can cause huge financial damage. In particular,
ensuring that arithmetic operations are safe is one of the most
important and common security concerns of Ethereum smart
contracts nowadays. In response, several safety analyzers have
been proposed over the past few years, but state-of-the-art
is still unsatisfactory; no existing tools achieve high precision
and recall at the same time, inherently limited to producing
annoying false alarms or missing critical bugs. By contrast,
VERISMART aims for an uncompromising analyzer that performs
exhaustive verification without compromising precision or scala-
bility, thereby greatly reducing the burden of manually checking
undiscovered or incorrectly-reported issues. To achieve this goal,
we present a new domain-specific algorithm for verifying smart
contracts, which is able to automatically discover and leverage
transaction invariants that are essential for precisely analyzing
smart contracts. Evaluation with real-world smart contracts
shows that VERISMART can detect all arithmetic bugs with a
negligible number of false alarms, far outperforming existing
analyzers.

I. INTRODUCTION

Safe smart contracts are indispensable for trustworthy
blockchain ecosystems. Blockchain is widely recognized as
one of the most disruptive technologies and smart contracts lie
at the heart of this revolution (e.g., [1], [2]). Smart contracts
are computer programs that run on blockchains in order
to automatically fulfill agreed obligations between untrusted
parties without intermediaries. Unfortunately, despite their
potential, smart contracts are more likely to be vulnerable than
traditional programs because of their unique characteristics
such as openness and immutability [3]. As a result, unsafe
smart contracts are prevalent and are increasingly becoming a
serious threat to the success of the blockchain technology. For
example, recent infamous attacks on the Ethereum blockchain
such as the DAO [4] and the Parity Wallet [5] attacks were
caused by unsafe smart contracts.

In this paper, we present VERISMART, a fully automated
safety analyzer for verifying Ethereum smart contracts with a
particular focus on arithmetic safety. We focus on detecting
arithmetic bugs such as integer over/underflows and division-
by-zeros because smart contracts typically involve lots of
arithmetic operations and they are major sources of security
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TABLE I
STATISTICS ON CVE-REPORTED SECURITY VULNERABILITIES OF

ETHEREUM SMART CONTRACTS (AS OF MAY. 31, 2019)

Arithmetic Bad Access Unsafe Input Others TotalOver/underflow Randomness Control Dependency
487 (95.7 %) 10 (1.9 %) 4 (0.8 %) 4 (0.8 %) 4 (0.8%) 509

vulnerabilities nowadays. For example, arithmetic over/un-
derflows account for 95.7% (487/509) of CVEs assigned to
Ethereum smart contracts, as shown in Table I. Even worse,
arithmetic bugs, once exploited, are likely to cause significant
but unexpected financial damage (e.g., the integer overflow
in the SmartMesh contract [6] explained in Section II). Our
goal is to detect all arithmetic bugs before deploying smart
contracts on the blockchain.

Unlike existing techniques, VERISMART aims to be a truly
practical tool by performing automatic, scalable, exhaustive,
yet highly precise verification of smart contracts. Recent years
have seen an increased interest in automated tools for ana-
lyzing arithmetic safety of smart contracts [7], [8], [9], [10],
[11], [12]. However, existing tools are still unsatisfactory. A
major weakness of bug-finding approaches (e.g., [7], [9], [8],
[10]) is that they are likely to miss fatal bugs (i.e., resulting in
false negatives), because they do not consider all the possible
behaviors of the program. On the other hand, verification
approaches (e.g., [11], [12]) are exhaustive and therefore miss
no vulnerabilities, but they typically do so at the expense of
precision (i.e., resulting in false positives). In practice, both
false negatives and positives burden developers with error-
prone and time-consuming process for manually verifying a
number of undiscovered issues or incorrectly reported alarms.
VERISMART aims to overcome these shortcomings of existing
approaches by being exhaustive yet precise.

To achieve this goal, we present a new verification algorithm
for smart contracts. The key feature of the algorithm, which
departs significantly from the existing analyzers for smart
contracts [7], [8], [9], [10], [11], [12], is to automatically
discover domain-specific invariants of smart contracts during
the verification process. In particular, our algorithm automates
the discovery of transaction invariants, which are distinctive
properties of smart contracts that hold under arbitrary inter-
leaving of transactions and enable to analyze smart contracts
exhaustively without exploring all program paths separately. A
technical challenge is to efficiently discover precise invariants



from the huge search space. We propose an effective algorithm
tailored for typical smart contracts, which iteratively generates
and validates candidate invariants in a feedback loop akin
to the CEGIS (counter example-guided inductive synthesis)
framework [13], [14], [15]. Our algorithm is general and can
be used for analyzing a wide range of safety properties of
smart contracts besides arithmetic safety.

Experimental results show that our algorithm is much more
effective than existing techniques for analyzing Ethereum
smart contracts. We first evaluated the effectiveness of
VERISMART by comparing it with four state-of-the-art bug-
finders: OSIRIS [7], OYENTE [9], MYTHRIL [8], and MAN-
TICORE [10]. An in-depth study on 60 contracts that have
CVE vulnerabilities shows that VERISMART detects all known
vulnerabilities with a negligible false positive rate (0.41%). By
contrast, existing bug-finders failed to detect a large amount
(> 29.3%) of known vulnerabilities with higher false positive
rates (> 5.4%). We also compared VERISMART with two
state-of-the-art verifiers, ZEUS [11] and SMTCHECKER [12].
The results show that VERISMART is significantly more
precise than them thanks to its ability to discover transaction
invariants of smart contracts automatically.

Contributions: Our contributions are as follows:
• We present a new verification algorithm for smart con-

tracts (Section III). This is the first CEGIS-style algorithm
that leverages transaction invariants automatically during
the verification process.

• We provide VERISMART, a practical implementation of
our algorithm that supports the full Solidity language,
the de facto standard programming language for writing
Ethereum smart contracts.

• We provide in-depth evaluation of VERISMART in com-
parison with six analyzers [7], [9], [8], [10], [11], [12].
All experimental results are reproducible as we make our
tool and data publicly available.1

II. MOTIVATING EXAMPLES

In this section, we illustrate central features of VERIS-
MART with examples. We use three real-world smart contracts
to highlight key aspects of VERISMART that differ from
existing analyzers.

Example 1: Figure 1 shows a simplified function from
the SmartMesh token contract (CVE-2018-10376). In April
2018, an attacker exploited a vulnerability in the function and
succeeded to create an extremely large amount of unauthorized
tokens (≈ 5·1057 USD). This vulnerability, named proxyOver-
flow, was due to unexpected integer overflow.

The transferProxy function is responsible for trans-
ferring a designated amount of tokens (value) from
a source address (from) to a destination address (to)
while paying transaction fees (fee) to the message sender
(msg.sender). The core functionality is implemented at
lines 8–10, where the recipients’ balances (balance[to]
and balance[msg.sender]) are increased (lines 8 and

1http://prl.korea.ac.kr/verismart

1 function transferProxy (address from, address to, uint
value, uint fee) {

2 if (balance[from] < fee + value) revert();
3
4 if (balance[to] + value < balance[to] ||
5 balance[msg.sender] + fee < balance[msg.sender])
6 revert();
7
8 balance[to] += value;
9 balance[msg.sender] += fee;

10 balance[from] -= value + fee;
11 }

Fig. 1. A vulnerable function from SmartMesh (CVE-2018-10376).

9) and the sender’s balance (balance[from]) is decreased
by the same amount of the sent tokens at line 10.

Note that the developer is aware of the risks of integer
over/underflows and has made effort to avoid them. The condi-
tional statement at line 2 checks whether the sender’s balance
(balance[from]) is greater than or equal to the tokens to
be sent (fee+value), aiming to prevent integer underflow at
line 10. The guard statements at lines 4 and 5 check that the
recipients’ balances are valid after the transaction, intending
to prevent integer overflows at lines 8 and 9, respectively.

However, the contract still has a loophole at line 2. The
expression fee+value inside the conditional statement may
cause integer overflow, which enables the token sender to send
more money than (s)he has. Suppose all accounts initially have
no balances, i.e., balance[from]=0, balance[to]=0,
and balance[msg.sender]=0, and the function is
invoked with the arguments value=0x8ff...ff and
fee=0x700...01, where 256-bit unsigned integer variables
(value and fee) are represented in hexadecimal numbers
comprised of 64 digits (e.g., value has 63 fs and one
8). Suppose further the two unspecified address values are
given as the same but different from the sender’s (i.e.,
from = to ̸= msg.sender). These crafted inputs then
make the sanity checks at lines 2–6 powerless (i.e., the
three conditions at lines 2, 4, and 5 are all false because
fee+value = 0x8ff...ff + 0x700...01 = 0 and
balance[to] = balance[msg.sender] = 0). There-
fore, lines 8–10 for token transfer are executed unexpect-
edly, creating a huge amount of tokens from nothing (i.e.,
balance[to] = balance[from] = 0x8ff...ff and
balance[msg.sender] = 0x700...01.

This accident could have been prevented by VERISMART, as
it pinpoints the vulnerability at line 2. Indeed, VERISMART is
an exhaustive verifier, aiming to detect all arithmetic issues
in smart contracts. By contrast, inexhaustive bug-finders are
likely to miss critical vulnerabilities. For example, among the
existing bug-finders [7], [9], [8], [10], only OSIRIS [7] is able
to find the vulnerability. MYTHRIL [8] and OYENTE [9] fail
to detect the well-known proxyOverflow vulnerability.

Example 2: Figure 2 shows the multipleTransfer
function adapted from the Neo Genesis Token contract (CVE-
2018-14006). The function has a similar vulnerability to that
of the first example. At line 3 in Figure 2, it prevents the
underflow possibility of the token sender’s account but does
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1 function multipleTransfer(address[] to, uint value) {
2 require(value * to.length > 0);
3 require(balances[msg.sender] >= value * to.length);
4 balances[msg.sender] -= value * to.length;
5 for (uint i = 0; i < to.length; ++i) {
6 balances[to[i]] += value;
7 }
8 }

Fig. 2. A vulnerable function from Neo Genesis Token (CVE-2018-14006).

not protect the overflow of the tokens to be sent (value *
to.length), which is analogous to the situation at line 2
of Figure 1. That is, in a similar way, an attacker can send
huge amounts of tokens to any users by spending only few
tokens [16].

Despite the similarity between vulnerabilities in Example 1
and 2, bug-finders have no guarantees of consistently finding
them. For example, OSIRIS, which succeeded to detect the
vulnerability in Example 1, now fails to report the similar
bug in Example 2. The other bug-finders are ineffective
too; MYTHRIL does not report any issues and OYENTE ob-
scurely reports that the entire function body is vulnerable
without specifying certain operations. On the other hand,
VERISMART reliably reports that the expression value *
to.length at lines 2–4 would overflow.

One of the main reasons for the unstable results of bug-
finders is that they rely heavily on a range of heuristics to
avoid false positives (e.g., see [7]). Though heuristics are good
at reducing false positives, the resulting analyzer is often very
brittle; even small changes in programs may end up with
missing fatal vulnerabilities as shown in Example 1 and 2,
which is particularly undesirable for safety-critical software
like smart contracts.

Example 3: Figure 3 shows a simplified version of the
contract, called BTX. The program has two global state
variables: balance stores balances of each account address
(line 2), and totalSupply is the total amount of the
supplied tokens (line 3). The constructor function initializes
totalSupply with 10000 tokens (line 6), and gives the
same amount of tokens to the creator of the contract (line
7). The transfer function sends value tokens from the
transaction message sender’s account to the recipient’s account
(lines 12–13), if it does not incur the underflow in the message
sender’s balance (line 11). The transferFrom function
is similar to transfer with an exception to the order of
performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13,
18, and 19, all of which are free of integer over/underflows.
However, it is nontrivial to see why they are all safe. In
particular, the safety of the two addition operations at lines 13
and 18 is tricky, because there are no direct safety-checking
statements in each function. To see why they do not overflow,
we need to discover the following two transaction invariants
that always hold no matter how the transactions (transfer
and transferFrom) are interleaved:

1 contract BTX {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor () {
6 totalSupply = 10000;
7 balance[msg.sender] = 10000;
8 }
9

10 function transfer (address to, uint value) {
11 require (balance[msg.sender] >= value);
12 balance[msg.sender] -= value;
13 balance[to] += value; // Safe
14 }
15
16 function transferFrom (address from, address to, uint

value) {
17 require (balance[from] >= value);
18 balance[to] += value; // Safe
19 balance[from] -= value;
20 }
21 }

Fig. 3. Example contract simplified from CVE-2018-13326.

• the sum of all account values is 10000, i.e.,∑
i

balance[i] = 10000, (1)

• and computing
∑

i balance[i] does not cause over-
flow.

By combining these two conditions and the preconditions
expressed in the require statements at lines 11 and 17, we
can conclude that, at lines 13 and 18, the maximum values
of both balance[to] and value are 10000, and thus the
expression balance[to]+value does not overflow in 256-
bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it
is likely for human auditors to make a wrong conclusion
that the contract is unsafe. This is in fact what happened in
the recent CVE report (CVE-2018-13326)2; the CVE report
incorrectly states that the two addition operations at lines 13
and 18 are vulnerable and thus the operations may overflow.
Unfortunately, existing safety analyzers do not help here. In
particular, verifiers, ZEUS [11] and SMTCHECKER [12], are
not precise enough to keep track of the implicit invariants such
as (1) and therefore cannot prove the safety at lines 13 and 18.
Bug-finders OSIRIS and OYENTE also produce false alarms.
MYTHRIL does not report any issues, but this does not mean
that it proved the absence of vulnerabilities.

By contrast, VERISMART is able to prove that the contract is
safe without any false alarms. Notably, VERISMART does so
by automatically inferring hidden invariants described above.
To our knowledge, VERISMART is the first of its kind, which
discovers global invariants of smart contracts and leverages
them during the verification process in a fully automated way.

III. VERISMART ALGORITHM

This section describes the verification algorithm of VERIS-
MART. We formally present the algorithm in a general setting,
so it can be used for analyzing other safety properties as well
beyond our application to arithmetic safety.

2https://nvd.nist.gov/vuln/detail/CVE-2018-13326
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Language: For brevity, we focus on a core subset of
Solidity [17]. However, VERISMART supports the full Solidity
language as the extension is discussed in Section IV. Consider
the following subset of Solidity:

c ∈ C ::= G∗ F ∗, f ∈ F ::= x(y){S}
a ∈ A ::= x := E | x[y] := E | assume(B) | assert(B)

s ∈ S ::= A | if B S1 S2 | whilel E S | S1;S2

We assume a single contract c is given, which consists of
a sequence of global state variable declarations (G∗) and a
sequence of function definitions (F ∗), where G and F denote
the sets of global variables and functions in the contract,
respectively. We assume a constructor function f0 ∈ F exists
in c. Each function f is defined by a function name (x),
argument (y), and a body statement (S). A statement S is
an atomic statement (A), a conditional statement, or a while
loop. An atomic statement a ∈ A is an assignment to a variable
(x := E), an assignment to an array element (x[y] := E), an
assume statement, or an assert statement. In our language, we
model mapping variables in Solidity as arrays. In our language,
assume differs from assert ; while the former models the
require statements in Solidity and stops execution if the
condition evaluates to false, the latter does not affect program
semantics. E and B stand for conventional arithmetic and
boolean expressions, respectively, where we assume arith-
metic expressions produce 256-bit unsigned integers. In our
language, loops are annotated with labels (l), and the entry
and the exit of each function f are annotated with special
labels entryf and exitf , respectively. Let Label be the set
of all labels in the program. We assume each function f has
public (or external) visibility, meaning that all functions
in the contract can be called from the outside.

Goal: Our goal is to develop an algorithm that
proves or disproves every assertion (which we also call
query) in the contract. We assume that safety proper-
ties to verify are expressed as the assert statements in
the program. In our application to arithmetic safety, as-
sertions can be automatically generated; for example, for
each addition a+b and multiplication a*b, we gener-
ate assert(a+b>=a) and assert(a==0||(a!=0 &&
(a*b)/a==b)), respectively.

Notation: We use the lambda notation for functions. For
example, λx.x + 1 is the function that takes x and returns
x+1. We write FOL for the set of first-order formulas in the
combined theory of fixed-sized bitvectors, arrays with exten-
sionality, and equality with uninterpreted functions. When e
is an expression or a formula, we write e[y/x] for the new
expression where x gets replaced by y. We write FV(e) for
the set of free variables in e.

A. Algorithm Overview

VERISMART departs significantly from existing analyzers
for smart contracts [7], [8], [9], [10], [11], [12], [18], [19],
[20], [21] in that VERISMART applies a CEGIS-style verifi-
cation algorithm that iteratively searches for hidden invariants
that are required for verifying safety properties.

1 contract RunningExample {
2 uint public n;
3 constructor () { n = 1;}
4 function f () public {
5 assert (n + 1 >= n);
6 n = n + 1;
7 if (n >= 100) { n = 1; }
8 }
9 }

Fig. 4. Example contract.
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Fig. 5. Algorithm overview.

Invariants of Smart Contracts: We consider two kinds of
invariants for smart contracts: transaction and loop invariants.
We say a formula is a transaction invariant if it is valid at
the end of the constructor and the validity is preserved by
the execution of public functions that can be invoked by
transactions. Loop invariants are more standard; a formula
is an invariant of a loop if the formula is valid at the entry
of the loop and is preserved by the loop body. Transaction
invariant is global and thus it is a single formula, whereas
loop invariants are local and must be separately given for each
loop in the program. Thus, our algorithm aims to discover a
pair (ψ, µ), where ψ ∈ FOL is a transaction invariant and
µ ∈ Label→ FOL is a mapping from loop labels to formulas.
We write

∧
for pointwise conjoining operation between two

mappings µ1 and µ2, i.e., µ1

∧
µ2 = λl ∈ Label.µ1(l)∧µ2(l).

Example 1: Consider the contract in Figure 4. The program
has one global variable n, which is initialized to 1 in the
constructor. The function f can be invoked from the outside
of the contract; it increases the value of n by 1 every time
it is called, but resets it to 1 whenever n is 100. Note that
n ≤ 100 is a transaction invariant: 1) it holds at the end of
the constructor, and 2) supposing that n ≤ 100 holds before
entering f, we can prove that it also holds when exiting the
function. Our algorithm automatically discovers the invariant
n ≤ 100 and succeeds to prove that the assertion at line 5 is
safe; upon entering f, n ≤ 100 holds and n ≤ 100→ n+1 ≥
n is valid in the theory of unsigned 256 bitvector arithmetic.

Algorithm Structure: Figure 5 describes the overall struc-
ture of our algorithm. The input is a smart contract written in
Solidity, and the output is a verification result that indicates
whether each query (i.e., assertion) in the program is proven
safe or not. The algorithm consists of two components, a
validator and a generator, where the validator has a solver
as a subcomponent.

The algorithm aims to find contract-specific invariants that
are inductive and strong enough to prove all provable queries
in the given contract. The role of the generator is to produce



candidate invariants that help the validator to prove as many
queries as possible. Given a candidate invariant, the validator
checks whether the invariant is useful for proving the queries.
If it fails to prove the queries, it provides the set of unproven
queries as feedback to the generator. The generator uses this
feedback to refine the current invariant and generate new ones.
This way, the validator and generator form an iterative loop
that continuously refines the analysis results until the program
is proven to be safe or the given time budget is exhausted.
Upon termination, all unproven queries are reported to users
as potential safety violations.

Algorithm 1 shows our verification algorithm. It uses a
workset (W ) to maintain candidate invariants, which initially
contains the trivial invariant (true, λl.true) (line 1): the trans-
action invariant ψ is true and the loop invariant mapping µ
maps every label (l) to true . The repeat-until loop at lines
2–11 correspond to the feedback loop in Figure 5. At lines 3
and 4, the algorithm chooses and removes a candidate invariant
(ψ, µ) from the workset. We choose a candidate invariant that
is the smallest in size. At line 5, we run the validator to check
whether the current candidate is inductive and strong enough
to prove queries, which returns a pair of the boolean variable
inductive , indicating whether the current candidate invariant
is inductive or not, and the set U of unproven queries. If U
is empty (line 6), the algorithm terminates and the contract is
completely proven to be safe. Otherwise (line 8), we generate
a new set of candidate invariants and add them to the workset.
Finally, when the current candidate fails to prove some queries
but is known to be at least inductive (line 9), we strengthen the
remaining candidate invariants using it (line 10), because we
can potentially prove more queries with stronger invariants. By
doing so, we can find useful invariants more efficiently. The
algorithm iterates until it times out or the workset becomes
empty. We assume that the algorithm implicitly maintains
previously generated invariants to avoid redundant trials.

Technical Contributions: Although the overall algorithm
follows the general framework of CEGIS [13], [14], [15],
we provide an effective, domain-specific instantiation of the
framework in the context of smart contract analysis. Now
we describe the details of this instantiation: validator (III-B),
generator (III-C), and solver (III-D).

B. Validator

The goal of the validator is to check whether the current
candidate invariant (ψ, µ) is inductive and strong enough to
prove safety of the queries. The input to the validator is an
annotated program (c, ψ, µ), i.e., smart contract c annotated
with transaction (ψ) and loop (µ) invariants. The validator
proceeds in three steps.

Basic Path Construction: Given an annotated program
(c, ψ, µ), we first break down the program into a finite set
of basic paths [22]. A basic path is a sequence of atomic
statements that begins at the entry of a function or a loop, and
ends at the exit of a function or the entry of a loop, without
passing through other loop entries. We represent a basic path p
by the five components: ((l1, ϕ1), a1; . . . ; an, (l2, ϕ2)), where

Algorithm 1 Our Verification Algorithm
Input: A smart contract c to verify
Output: Verification success or potential safety violations

1: W ← {(true, λl.true)}
2: repeat
3: Choose a candidate invariant (ψ, µ) from W
4: W ←W \ {(ψ, µ)}
5: (inductive, U)← VALIDATOR(c, ψ, µ)
6: if U = ∅ then verification succeeds
7: else
8: W ←W ∪ GENERATOR(U,ψ, µ)
9: if inductive then

10: W ← {(ψ′ ∧ ψ, µ′ ∧µ) | (ψ′, µ′) ∈W}
11: until W = ∅ or timeout
12: return potential safety violations

l1 is the label of the starting point (i.e., function or loop
entry) of the path, ϕ1 ∈ FOL is the invariant annotated at
l1, a1, . . . , an are atomic statements, l2 is the label of the
end point (i.e., function exit or loop entry) of the path, and
ϕ2 ∈ FOL is the invariant annotated at l2. The basic path
satisfies the following properties:

1) If l1 is a function entry, ϕ1 = ψ (i.e., transaction
invariant). An exception: ϕ1 = true if l1 is entry of
constructor. If l2 is a function exit, ϕ2 = ψ.

2) Otherwise, i.e., when l1 and l2 are labels of loops, ϕ1 =
µ(l1) and ϕ2 = µ(l2) (i.e., considering loop invariants).

Note that our construction of basic paths is exhaustive as we
consider all paths of the program by summarizing the effects
of transactions and loops with their invariants. The basic paths
can be computed by traversing control flows of the program.

Example 2: Consider the contract in Figure 4 annotated with
the transaction invariant ψ = n ≤ 100. We do not consider
loop invariants as the contract does not have any loops. The
annotated program is converted into three basic paths:

p1 : ((entry0, true), n := 1, (exit0, n ≤ 100))
p2 : ((entryf , n ≤ 100), a1, (exitf , n ≤ 100))
p3 : ((entryf , n ≤ 100), a2, (exitf , n ≤ 100))

where a1 = assert(n + 1 ≥ n);n := n + 1; assume(n ≥
100);n := 1 and a2 = assert(n + 1 ≥ n);n := n +
1; assume(n < 100). p1 represents the basic path of the
constructor (whose entry and exit labels are entry0 and
exit0, respectively). p2 and p3 represent the basic paths of
the function f that follow the true and false branches of
the conditional statement at line 7, respectively. Note that
conditional statements and loops do not appear as they are
broken into basic paths with original conditions given as
assume statements.

Generation of Verification Conditions: Let P be the set of
basic paths constructed from the annotated program. We next
generate verification conditions (VCs) for each basic path.

To derive the VCs, we should be able to express effects of
program statements in FOL. To do so, we define a strongest



postcondition predicate transformer sp : stmt → FOL ×
FOL → FOL × FOL, which is defined in a standard way
for each atomic statement as follows:

sp(x := e)(ϕ1, ϕ2) = (x = e[x′/x] ∧ ϕ1[x
′/x], ϕ2)

sp(x[y] := e)(ϕ1, ϕ2) = (x = x′⟨y ◁ e[x′/x]⟩ ∧ ϕ1[x
′/x], ϕ2)

sp(assume(e))(ϕ1, ϕ2) = (ϕ1 ∧ e, ϕ2)
sp(assert(e))(ϕ1, ϕ2) = (ϕ1, ϕ2 ∧ (ϕ1 → e))

where unprimed variables (e.g., x) and primed variables (e.g.,
x′) represent the current and previous program states, respec-
tively. In each rule, ϕ1 is a precondition and sp transforms it
into a postcondition while accumulating the safety conditions
of assertions in ϕ2. We write x′⟨y ◁ e⟩ for the modified array
x′ that stores the value of e at position y. With sp, we define
the procedure GENVC that generates the VC of a basic path:

GENVC(((l1, ϕ1), a1; . . . ; an, (l2, ϕ2))) = (ϕ′1 → ϕ2, ϕ
′
2)

where (ϕ′1, ϕ
′
2) = (sp(an)◦· · ·◦sp(a2)◦sp(a1))(ϕ1, true). The

generated VC consists of two parts: ϕ′1 → ϕ2 is a formula for
checking that the annotated invariants are inductive, and ϕ′2 is
a formula for checking the safety properties in assertions.

Example 3: Consider the basic path p3 in Example 2. The
corresponding VC is a pair of (n′ ≤ 100 ∧ n = n′ + 1 ∧ n <
100 → n ≤ 100, n ≤ 100 → n + 1 ≥ n), both of which are
valid in the bitvector theory.

Collecting Unproven Paths: Finally, we return a pair of
the boolean variable inductive and the subset U ⊆ P of basic
paths whose VCs are invalid:

(inductive, U) = if ∃p ∈ P.GENVC(p).1 is invalid then
(false, {p ∈ P | GENVC(p).1 is invalid})

else (true, {p ∈ P | ∃F ∈ GENVC(p).2 is invalid})
GENVC(p).1 and GENVC(p).2 denote the first (i.e., the VC
on inductiveness) and the second (i.e., the VC on safety)
component of GENVC(p), respectively. We also write F ∈
GENVC(p).2 for a clause of GENVC(p).2, where F corre-
sponds to the safety condition of a single query. In the above
procedure, we first check whether some VCs regarding induc-
tiveness are invalid. If it does so (if-case), we set inductive
to false and U becomes the basic paths where inductiveness
checking failed. Note that, in this case, we accelerate our
verification procedure by excluding from U the paths where
safety checking may fail. That is, we first focus on refining
invariants to be inductive and then strengthen them further to
prove safety rather than trying to achieve both at the same
time. When the current candidate invariant is inductive (else-
case), we set inductive to true and collect the basic paths
where some queries are not proven to be safe. To check the
validity of the VCs, we use a domain-specific solver, which
will be explained in Section III-D.

C. Generator
The generator takes the set U as feedback and produces

new candidate invariants by refining the current one (ψ, µ).
GENERATOR(U,ψ, µ) returns the following set:

{(ψ, µ′) | µ′ ∈ LOOP(µ,U)} ∪ {(ψ′, µ) | ψ′ ∈ TRAN(ψ,U)}

where LOOP and TRAN generate new loop and transaction
invariants, respectively, based on the current ones. We define
LOOP(µ,U) so as to return the following set of refined loop
invariants:⋃
((l1, ),a,(l2, ))∈U

{µ[li 7→ ϕi] | i ∈ [1, 2], ϕi ∈ REFINEL(µ(li), a)}

where we assume l1 and l2 are loop labels, and a is the
sequence of atomic statements in the basic path. The definition
of TRAN(ψ,U):

{ψ′ | ((l1, ), a, (l2, )) ∈ U,ψ′ ∈ REFINET(ψ, a)}

where we assume l1 is the label of a function entry or l2
is the label of a function exit. In the definitions above, the
procedures REFINEL and REFINET are actually responsible
for refining loop and transaction invariants, which ultimately
determine the effectiveness of the generator and the overall
verification algorithm.

Domain-Specific Refinement: We define REFINEL and
REFINET in terms of refinement relation. A refinement relation
(⇝X,C) ⊆ FOL × FOL is a binary relation on logical
formulas, parameterized by variable set X and constant set
C, which describes how a candidate invariant is refined in one
step: i.e., ϕ can be refined to any of {ϕ′ | ϕ⇝X,C ϕ′}. In our
approach, choosing a right refinement relation holds the key
to cost-effective verification since it defines the search space
of candidate invariants. For example, simply choosing a very
general or specific refinement relation would not be practical
because of the huge or too limited search space. Instead, we
have to carefully design a refinement relation tailored for real-
world smart contracts to make our algorithm cost-effective.

Fortunately, we observed that smart contracts in practice
share common properties and accordingly considered the
following points when we design the refinement relation.
First, smart contracts often use loops in simple and restricted
forms, e.g., for(i = 0; i < x ; i++), and therefore
it is sufficient to consider simple numerical invariants. In
particular, we decided to focus on invariants of the forms
x = y, x ≥ y, x = n, x ≥ n, and x ≤ n, where x, y are
variables and n denotes integer constants. That is, we do not
consider non-linear or compound invariants such as x = y2

and x = y+ z. Second, because smart contracts use the map-
ping datatype extensively (e.g., balance in token contracts),
it is particularly important to capture their common properties
(e.g., the sum of balance is equal to totalSupply).
Currently, we support the function symbol sum for variables
of mapping type: for example, sum(balance) means the
sum of all balances. Third, we consider invariants that are
quantifier-free conjunctive formulas. That is, we do not allow
disjunctions or quantifiers to be used in candidate invariants.

Based on the observations, we define the refinement relation:

ϕ1 ⇝X,C ϕ2 ⇐⇒ ϕ2 = ϕ1 ∧ φ and φ ∈ A

where A is the set of atomic predicates of the forms x =
y, x ≥ y, x = n, x ≥ n, x ≤ n, sum(x) = e, where x, y ∈ X ,
n ∈ C, and e ∈ C ∪ X . That is, the current invariant



ϕ1 is strengthened with a linear and quantifier-free atomic
predicate (φ). Note that we only use the symbol sum in the
equality predicate as we found invariants of other forms such
as sum(x) > e are rarely used in practice. Finally, we define
REFINET and REFINEL using ⇝X,C as follows:

REFINEL(ψ, a) = {ψ′ | ψ ⇝vars(a),const(a) ψ
′}

REFINET(ϕ, a) = {ϕ′ | ϕ⇝globals,cnstr∪const(a) ϕ
′}

where vars(a) and const(a) are the variables and constants
appearing in the atomic statements a, respectively. globals and
cnstr represent the set of global variables and constants in the
constructor function, respectively. We instantiate the sets X
and C differently because transaction invariants often involve
global state variables and constants of the entire contract while
loop invariants involve local and global variables and constants
that appear in the enclosing function. In both cases, we reduce
the search space by focusing on local variables and constants
to those of the current basic path (a).

D. Solver

The last component is the solver that is used by the val-
idator to discharge the verification conditions. The solver
ultimately uses an off-the-shelf SMT solver (we use Z3 [23])
but performs domain-specific preprocessing and optimization
steps before using it, which we found important to make
our approach practical for real-world contracts. For a basic
path p, we assume its verification condition F (either the
inductiveness condition, i.e., F = GENVC(p).1, or the safety
condition of a query, i.e., F ∈ GENVC(p).2) is given.

Preprocessing: Since F may contain symbols (i.e., sum)
that conventional SMT solvers cannot understand, we must
preprocess F so that all such uninterpretable symbols get
replaced by equi-satisfiable formulas in conventional theories.
For example, let F contains sum as follows:

F = · · · ∧ sum(x) = n ∧ x[i] = v1 ∧ x[j] = v2 ∧ · · ·

where we elide portions of F that are irrelevant to the mapping
variable x (i.e., x is only accessed with i and j in the given
basic path p). Our idea to translate F into a formula without
sum is to instantiate the symbol with respect to the context
where F is evaluated. In this example, we can translate the
formula F into the following:

· · · ∧ F1 ∧ F2 ∧ x[i] = v1 ∧ x[j] = v2 ∧ · · ·

where F1 = (i ̸= j → x[i]+x[j]+Rx = n)∧(i = j → x[i]+
Rx = n) asserts that the sum of distinct elements of x equals
n. Because x is used in the given basic path with two index
variables i and j, we consider two cases: i = j and i ̸= j.
When i ̸= j, we replace sum(x) = n by x[i]+x[j]+Rx = n,
where Rx is a fresh variable denoting the sum of x[k] for all
k ∈ domain(x) \ {i, j}, where domain(x) is the domain of
the mapping. The other case (i = j) is handled similarly. F2

is the additional assertion that guarantees the validity of F1:
F2 = (i ̸= j → x[i] + x[j] ≥ x[j] ∧ x[i] + x[j] + Rx ≥
Rx) ∧ (i = j → x[i] + Rx ≥ Rx) ∧ Bx, where Bx is a
fresh propositional variable, meaning that the summations in

Rx do not overflow. The general method for our preprocessing
is given in Appendix A.

Note that the verification condition after preprocessing can
be checked by a conventional SMT solver. However, we found
that the resulting formulas are often too complex for modern
SMT solvers to handle efficiently, so we apply the following
optimization techniques.

Efficient Invalidity Checking: Most importantly, we
quickly decide invalidity of formulas without invoking SMT
solvers. We observed that even state-of-the-art SMT solvers
can be extremely inefficient when our verification conditions
are invalid. For example, consider the following formula:

true → (a−b = 0)∨(a−b ̸= 0∧((a−b)∗255)/(a−b) = 255).

It is easy to see that the formula is invalid in the theory of
256-bit arithmetic (e.g., it does not hold when a = 2255 and
b = 0). Unfortunately, however, the latest version of Z3 [23]
(ver 4.8.4) and CVC4 [24] (ver 1.7) takes more than 3 minutes
to conclude the formula is invalid.

To mitigate this problem, we designed a simple decision
procedure based on the free variables of formulas; given a
VC of the form p → q, we conclude that it is invalid if
FV(p) ̸⊇ FV(q). The intuition is that p must include more vari-
ables than q, as a necessary condition to be stronger than q. In
the above example, we conclude the formula is invalid because
FV(true) ̸⊇ FV(a = 0 ∨ (a ̸= 0 ∧ (a ∗ b)/a = b)) = {a, b}.
In practice, we found that this simple technique improves
the scalability of the verification algorithm significantly as it
avoids expensive calls to SMT solvers.

Let us explain why our technique is correct. We first review
the notion of interpretation in first-order logic [22]. An in-
terpretation I : (DI , αI) is a pair of a domain (DI ) and an
assignment (αI ). The domain DI is a nonempty set of values
(or objects). The assignment αI maps variables, constants,
functions, and predicate symbols to elements, functions, and
predicates over DI . Let J : I ◁ {x 7→ v} denote an x-variant
of I such that J accords with I on everything except for x.
That is, DI = DJ and αI [y] = αJ [y] if y ̸= x, but αI [x] and
αJ [x] may be different. Then, we have the following result
(see Appendix B for proof).

Proposition 1: Let p and q be first-order formulas. Then,
p→ q is invalid if the following three conditions hold:

(i) FV(p) ̸⊇ FV(q),
(ii) p is satisfiable: ∃I. I |= p, and

(iii) q has a nontrivial variable: there exists x ∈ FV(q)\FV(p)
such that for any interpretation I , if I |= q then I ◁
{x 7→ v} |= ¬q for some v ∈ DI \ {αI [x]}.

Our technique is based on this result but checks the first
condition (i) only, which can be done syntactically and ef-
ficiently. We do not check the last two conditions (ii) and (iii)
as they require invoking SMT solvers in general. Therefore,
our technique may decide valid VCs as invalid (i.e., producing
false positives) although no invalid VCs are determined to be
valid (i.e., no false negatives). Because the technique causes
no false negatives, it can be used by sound verifiers.



Although approximated, our technique rarely produces false
positives in practice. For example, consider the valid formula
true → a ≥ a. Our technique may incorrectly conclude
that the formula is invalid, since FV(true) ̸⊇ FV(a ≥ a)
but we do not check the condition (iii) that the formula
violates. Note that, however, such a trivial formula is unlikely
to appear during the verification of real-world smart contracts;
the verification condition true → a ≥ a would be generated
from the trivial expression a−a that does not appear frequently
in programs. Even when they appear, we can easily remove the
triviality. For example, it is easy to simplify true → a ≥ a
into true → true that is not determined as invalid by our
technique since FV(true) ⊇ FV(true). In fact, no false
positives were caused by our technique in our experiments
in Section V.

Efficient Validity Checking: We also quickly identify
some valid formulas by using a number of domain-specific
templates. This is because our verification conditions are likely
to involve arrays and non-linear expressions extensively but
modern SMT solvers are particularly inefficient for handling
them. For example, a simple yet important validity template
is as follows:

F ′ → x ≥ (x ∗ n1)/n2
n1 ≤ n2

where F ′ denotes an arbitrary formula, x a 256-bit unsigned
integer variable, and n1 and n2 some integer constants.
This template asserts that, regardless of the precondition F ′,
x ≥ (x ∗ n1)/n2 holds if n1 ≤ n2. Using the template, we
can conclude that a formula · · · → y ≥ (y ∗ 99)/100 is valid
(i.e., the subtraction y− (y ∗ 99)/100 is safe from underflow)
without calling an external SMT solver. These templates are
used before the preprocessing step; several templates were
designed to determine the validity of formulas containing
domain-specific symbols at a high level without preprocessing.
We provide more examples in Appendix C.

IV. IMPLEMENTATION

In this section, we explain implementation details of VERIS-
MART, which consists of about 7,000 lines of OCaml code.
Although Section III describes our algorithm for a small subset
of Solidity, our implementation supports the full language
(except for inline assembly). Most Solidity features (e.g.,
function modifers) can be desugared into our core language
in a straightforward way. We discuss nontrivial issues below.

Function Calls: Basically, we handle function calls by
inlining them into their call-sites up to a predefined inlining
depth k (currently, less than or equal to 2). Exceptions include
relatively large functions (with more than 20 statements) that
might cause scalability issues and inter-contract function calls
(i.e., calling functions in other contracts via contract objects).
To perform exhaustive verification, we handle those remaining
function calls conservatively as follows.

First, we conservatively reflect side-effects of function calls
on the caller side. To do so, we first run a side-effect
analysis [25] to find variables whose values may be changed
by the called functions. Next, we weaken the formulas at

call-sites by replacing each of atomic predicates that involve
those variables by true. For example, consider a call statement
x:=foo() and assume foo may change the value of variable
a in its body. Suppose further the precondition of the call-site
is a ≥ 1∧b ≥ 1∧c ≥ 1∧x ≥ y. Then, we obtain the following
postcondition of the call-site: true ∧ b ≥ 1 ∧ c ≥ 1 ∧ true
where a ≥ 1 and x ≥ y get replaced by true . Regarding
inter-contract function calls, it is enough to invalidate the
value of return variables only, as inter-contract calls in Solidity
cannot directly modify other contracts’ states. For example,
consider the precondition above and an inter-contract call x
: = o.foo (). We produce the postcondition a ≥ 1∧ b ≥
1 ∧ c ≥ 1 ∧ true , where only x ≥ y is replaced by true .

Second, we separately analyze function bodies not inlined.
This step is needed to detect potential bugs in the functions
skipped during the step described in the preceding paragraph.
To perform exhaustive verification, we analyze these functions
by over-approximating their input states. Specifically, when
the function in a main contract has public or external
visibility, we run the algorithm in Section III which annotates
entry and exit with transaction invariant. On the other hand,
when the function in a main contract has internal or
private visibility (i.e., the functions which cannot be called
from the outside and can only be accessed via function call
statements) or the function is defined in other contracts, we
generate the VCs after we annotate entries and exits of them
with true, i.e., incoming state at the entry is over-approximated
as true and inductiveness condition can be trivially checked at
the exit.

In summary, VERISMART performs exhaustive safety ver-
ification without missing any possible behaviors. In theory,
we may lose precision due to the conservative function-call
analysis. However, as our experimental results in Section V
demonstrate, our approach is precise enough in practice.

Inheritance: In Section III, we assumed a single contract
is given. To support contract inheritance, we copy functions
and global variables of parent contracts to a main contract
using the inheritance graph provided by the Solidity compiler.
During this conversion, we consider function overriding and
variable hiding, and do not copy functions with the same
signatures and the same variables.

Structures: We encode structures in Solidity with arrays.
To do so, we introduce a special mapping variable for each
member of a structure type, which maps structures to the
member values. For example, given a precondition ϕ, the
strongest postcondition of command x.y := z is my =
m′

y⟨x ◁ z⟩ ∧ ϕ[m′
y/my], where my is a map (or an array)

from structures to the corresponding values of member y and
x is an uninterpreted symbol for the structure variable x.
Note that we are able to handle aliasing among structures
using this encoding. For example, if two structures p and q
are aliased and they both have y as a member, then we can
access the same member y using either of the structures, i.e.,
my[p] = my[q].

Inline Assembly: One potential source of false negatives
of source code analyzer (e.g., ZEUS [11]) is inline assembly.



VERISMART also has this limitation and may miss bugs
hidden in embedded bytecode. However, VERISMART con-
servatively analyzes the remaining parts of the source code
by considering the side-effects of the assembly blocks in a
similar way that we handle function call statements, i.e., we
replace each atomic predicate by true if it involves variables
used in assembly code (using the information provided by the
Solidity compiler). Note that this limitation does not impair the
practicality of VERISMART significantly, as inline assembly is
not very common in practice. For example, in our benchmarks
in Section V, only four contracts (#4, #16, #52 in Table II,
#24 in Table IV) contain assembly blocks but none of these
assembly blocks include arithmetic operations.

V. EVALUATION

We evaluate the effectiveness of VERISMART by comparing
it with existing tools. Research questions are as follows:
(1) How precisely can VERISMART detect arithmetic bugs

compared to the existing bug-finders, i.e., OSIRIS [7],
OYENTE [9], MYTHRIL [8], MANTICORE [10]?

(2) How does VERISMART compare to the existing verifiers,
i.e., ZEUS [11] and SMTCHECKER [12]?

In addition, we conduct a case study to show VERISMART can
be easily extended to support other types of vulnerabilities
(Section V-C). We used the latest versions of the existing tools
(as of May 1st, 2019). All experiments were conducted on a
machine with Intel Core i7-9700K and 64GB RAM.

A. Comparison with Bug-finders

We evaluate the bug-finding capability of VERISMART by
comparing it with four bug-finding analyzers for Ethereum
smart contracts: OSIRIS [7], OYENTE [26], MYTHRIL [8], and
MANTICORE [10]. They are well-known open-sourced tools
that support detection of integer overflows (OSIRIS, OYENTE,
MYTHRIL, MANTICORE) and division-by-zeros (MYTHRIL).
In particular, OSIRIS is arguably the state-of-the-art tailored
for finding integer overflow bugs [7].

Setup: We used 60 smart contracts that have vulnerabilities
with assigned CVE IDs. We have chosen these contracts to
enable in-depth manual study on the analysis results with
known vulnerabilities confirmed by CVE reports. The 60
benchmark contracts were selected randomly from the 487
CVE reports that are related to arithmetic overflows (Table I),
excluding duplicated contracts with minor syntactic differ-
ences (e.g., differences in contract names or logging events).
During evaluation, we found four incorrect CVE reports (#13,
#20, #31, #32 in Table II), which will be discussed in more
detail at the end of the section.

To run OSIRIS, OYENTE, MYTHRIL, and MANTICORE, we
used public docker images provided together with these tools.
Following prior work [7], we set the timeout to 30 minutes per
contract. For fair comparison, we activated only the analysis
modules for arithmetic bug detection when such option is
available (MYTHRIL, MANTICORE). We left other options
as default. For VERISMART, we set the timeout to 1 minute
for the last entrance of the loop in Algorithm 1, and set the

timeout to 10 seconds for Z3 request, because these numbers
worked effectively in our experience; if we set each timeout
to a lower value, the precision may decrease (Section V-D). In
analysis reports of each tool, we only counted alarms related
to arithmetic bugs (integer over/underflows and division-by-
zeros) for a main contract whose name is available at the
Etherscan website [27].

Results: Table II shows the evaluation results on the CVE
dataset. For each benchmark contract and tool, the table shows
the number of alarms (#Alarm) and the number of false
positives (#FP) reported by the tool; regarding these two
numbers, we did not count cases where the tools (OYENTE and
MYTHRIL) ambiguously report that the entire body of a
function or the entire contract is vulnerable. The CVE columns
indicate whether the tool detected the vulnerabilities in CVE
reports or not (✓: a tool successfully pinpoints all vulnerable
locations in each CVE report, ✗: a tool does not detect any
of them, △: a tool detects only a part of vulnerable points in
each CVE report or, obscurely reports the body of an entire
function containing CVE vulnerabilities is vulnerable without
pinpointing specific locations. N/A: all vulnerabilities in CVE
reports are actually safe; see Table III).

The results show that VERISMART far outperforms the
existing bug-finders in both precision and recall. In to-
tal, VERISMART reported 492 arithmetic over/underflow and
division-by-zero alarms. We carefully inspected these alarms
and confirmed that 490 out of 492 were true positives (i.e.,
safety can be violated for some feasible inputs), resulting
in a false positive rate ( #FP

#Alarm ) of 0.41% (2/492). We also
inspected 484 (=976-492) unreported queries to confirm that
all of them are true negatives (i.e., no feasible inputs exist
to violate safety), resulting in a recall of 100%. Of course,
VERISMART detected all CVE vulnerabilities. In contrast,
existing bug-finders missed many vulnerabilities. For example,
OSIRIS managed to detect 41 CVE vulnerabilities with 17
undetected known vulnerabilities. OYENTE pinpointed 20
exact vulnerable locations in CVE, partly detected vulner-
abilities in 4 CVE reports, vaguely raised alarms on 11
functions containing vulnerable locations, and missed 23 CVE
vulnerabilities. MYTHRIL detected vulnerabilities in 10 CVE
reports, obscurely warned that 1 function is vulnerable, and
missed 46 known issues. MANTICORE was successful in
only two CVE reports, failing on 42 CVE reports. The false
positive rates of OSIRIS, OYENTE, and MYTHRIL were 5.42%
(13/240), 8.19% (14/171), and 10.64% (10/94), respectively.

Efficiency: VERISMART was also competitive in terms of
efficiency. To obtain the results in Table II on the 60 bench-
mark programs, VERISMART, OSIRIS, OYENTE, MYTHRIL,
and MANTICORE took 1.1 hour (3,807 seconds), 4.2 hours
(14,942 seconds), 14 minutes, 13.8 hours (49,680 seconds),
and 31.4 hours (112,920 seconds) respectively, excluding the
cases of timeout (though we set the timeout to 30 minutes,
MANTICORE sometimes did not terminate within 3 days)
and internal errors (e.g., unsupported operations encountered,
abnormal termination) of MYTHRIL and MANTICORE.



TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. ✓: A TOOL SUCCESSFULLY PINPOINTS
ALL VULNERABLE LOCATIONS IN CVE. △: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE
FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. ✗: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.

N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE
CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 ✓ 0 0 ✗ 1 0 △ 2 0 ✓ 0 0 ✗
#2 2018-10376 SMT 294 22 13 0 ✓ 1 0 ✓ 2 0 ✗ 1 0 ✗ timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 ✓ 9 0 ✗ 8 0 ✓ 5 0 ✓ 0 0 ✗
#4 2018-10706 SCA 404 48 33 0 ✓ 9 0 ✗ 4 0 △ 2 0 ✗ internal error
#5 2018-11239 HXG 102 11 7 0 ✓ 6 0 ✓ 2 0 ✗ 3 0 ✓ 2 0 ✓
#6 2018-11411 DimonCoin 126 15 7 0 ✓ 5 0 ✗ 5 0 ✓ 5 0 ✓ 3 0 ✓
#7 2018-11429 ATL 165 9 4 0 ✓ 3 0 ✓ 2 0 △ 0 0 ✗ 0 0 ✗
#8 2018-11446 GRX 434 39 24 2 ✓ 8 2 ✗ 12 4 ✗ 4 2 ✗ internal error
#9 2018-11561 EETHER 146 10 5 0 ✓ 4 0 ✓ 2 0 △ 2 0 ✓ 0 0 ✗
#10 2018-11687 BTCR 99 20 4 0 ✓ 2 0 ✓ 2 0 △ 3 2 ✗ 0 0 ✗
#11 2018-12070 SEC 269 40 8 0 ✓ 6 0 ✓ 4 0 ✗ 3 1 ✗ 0 0 ✗
#12 2018-12230 RMC 161 9 5 0 ✓ 3 0 ✓ 5 0 ✓ 0 0 ✗ 0 0 ✗
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 ✓ 0 0 ✗ 0 0 ✗ 0 0 ✗ 0 0 ✗
#15 2018-13127 DSPX 238 6 4 0 ✓ 3 0 ✓ 3 0 △ 1 0 ✗ 0 0 ✗
#16 2018-13128 ETY 193 10 4 0 ✓ 3 0 ✓ 3 0 △ 0 0 ✗ 0 0 ✗
#17 2018-13129 SPX 276 9 6 0 ✓ 5 0 ✓ 3 0 △ 1 0 ✗ internal error
#18 2018-13131 SpadePreSale 312 4 3 0 ✓ 0 0 ✗ 0 0 ✗ 0 0 ✗ internal error
#19 2018-13132 SpadeIco 403 9 6 0 ✓ 0 0 ✗ 0 0 ✗ 0 0 ✗ internal error
#20 2018-13144 PDX 103 5 2 0 ✓ 2 1 ✓ 2 1 ✓ internal error 0 0 ✗
#21 2018-13189 UNLB 335 4 3 0 ✓ 2 0 ✓ 3 0 ✓ 1 0 ✗ 0 0 ✗
#22 2018-13202 MyBO 183 17 11 0 ✓ 5 0 ✓ 3 0 ✗ 1 0 ✗ internal error
#23 2018-13208 MoneyTree 171 17 10 0 ✓ 4 0 ✓ 2 0 ✗ 2 0 ✗ 0 0 ✗
#24 2018-13220 MAVCash 171 15 10 0 ✓ 4 0 ✓ 2 0 ✗ 1 0 ✗ 0 0 ✗
#25 2018-13221 XT 186 15 10 0 ✓ 4 0 ✓ 2 0 ✗ 2 0 ✗ 0 0 ✗
#26 2018-13225 MyYLCToken 181 17 11 0 ✓ 5 0 ✓ 6 0 ✗ 0 0 ✗ 0 0 ✗
#27 2018-13227 MCN 172 17 10 0 ✓ 4 0 ✓ 2 0 ✗ 2 0 ✗ 0 0 ✗
#28 2018-13228 CNX 171 17 10 0 ✓ 4 0 ✓ 2 0 ✗ 2 0 ✗ 0 0 ✗
#29 2018-13230 DSN 171 17 10 0 ✓ 4 0 ✓ 2 0 ✗ 2 0 ✗ 0 0 ✗
#30 2018-13325 GROW 176 12 2 0 ✓ 4 2 ✓ 1 1 ✗ 0 0 ✗ 0 0 ✗
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 ✓ 2 1 ✓ 2 1 ✓ 0 0 ✗ 0 0 ✗
#33 2018-13493 DaddyToken 344 40 22 0 ✓ 8 0 ✗ 2 0 ✗ 3 0 ✗ internal error
#34 2018-13533 ALUXToken 191 23 13 0 ✓ 8 0 ✓ 2 0 ✓ 1 0 ✗ 1 0 ✗
#35 2018-13625 Krown 271 22 9 0 ✓ 1 0 ✗ 3 0 ✓ 0 0 ✗ internal error
#36 2018-13670 GFCB 103 14 11 0 ✓ 6 1 ✓ 3 1 ✓ 1 0 ✗ 0 0 ✗
#37 2018-13695 CTest7 301 17 8 0 ✓ 0 0 ✗ 0 0 ✗ 0 0 ✗ 0 0 ✗
#38 2018-13698 Play2LivePromo 131 8 7 0 ✓ 7 0 ✓ 7 0 ✓ 5 0 ✗ 5 0 ✗
#39 2018-13703 CERB Coin 262 17 8 0 ✓ 5 0 ✓ 2 0 ✗ 2 1 ✗ 0 0 ✗
#40 2018-13722 HYIPToken 410 8 3 0 ✓ 2 0 ✓ 2 0 ✓ 0 0 ✗ internal error
#41 2018-13777 RRToken 166 8 3 0 ✓ 2 0 ✓ 2 0 ✓ 0 0 ✗ 0 0 ✗
#42 2018-13778 CGCToken 224 13 6 0 ✓ 4 0 ✓ 4 0 ✓ 1 0 ✗ 1 0 ✗
#43 2018-13779 YLCToken 180 17 11 0 ✓ 5 0 ✓ 6 0 ✓ 0 0 ✗ 0 0 ✗
#44 2018-13782 ENTR 171 17 10 0 ✓ 4 0 ✓ 2 0 ✓ 2 0 ✗ 0 0 ✗
#45 2018-13783 JiucaiToken 271 19 11 0 ✓ 6 0 ✓ 4 0 ✓ 0 0 ✗ internal error
#46 2018-13836 XRC 119 22 7 0 ✓ 5 0 ✗ 3 0 △ 3 1 ✓ timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 ✓ 4 0 ✗ 3 0 △ 3 0 ✓ 0 0 ✗
#48 2018-14002 MP3 83 12 4 0 ✓ 2 0 ✗ 2 0 △ 2 1 ✗ timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 ✓ 3 0 ✗ 2 0 △ 3 0 ✓ 1 0 ✗
#50 2018-14004 GLB 299 40 8 0 ✓ 5 0 ✓ 1 0 △ 0 0 ✗ 0 0 ✗
#51 2018-14005 Xmc 255 29 11 0 ✓ 8 0 ✓ 1 0 △ 3 0 △ 0 0 ✗
#52 2018-14006 NGT 249 27 13 0 ✓ 1 0 ✗ 5 0 △ 0 0 ✗ timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 ✓ 1 0 ✓ 1 0 ✓ 4 2 ✓ 0 0 ✗
#54 2018-14084 MKCB 273 17 10 0 ✓ 5 0 ✓ 4 0 ✗ 2 0 ✗ 1 0 ✗
#55 2018-14086 SCO 107 16 14 0 ✓ 7 2 ✓ 5 2 ✗ 0 0 ✗ 0 0 ✗
#56 2018-14087 EUC 174 15 7 0 ✓ 4 0 ✗ 4 0 ✗ 0 0 ✗ 0 0 ✗
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 ✓ 12 0 ✓ 5 0 ✓ 14 0 ✓ 0 0 ✗
#58 2018-14576 SunContract 194 12 4 0 ✓ 1 0 ✓ 0 0 ✗ 0 0 ✗ 0 0 ✗
#59 2018-17050 AI 141 8 3 0 ✓ 1 0 ✓ 1 0 ✓ 0 0 ✗ 0 0 ✗
#60 2018-18665 NXX 79 7 5 0 ✓ 4 0 ✓ 4 0 ✓ 0 0 ✗ 0 0 ✗

Total
✓:58 ✓:41 ✓:20 ✓:10 ✓: 2

12493 976 492 2 △: 0 240 13 △: 0 171 14 △:15 94 10 △: 1 14 0 △: 0
✗ : 0 ✗ :17 ✗ :23 ✗ :46 ✗ :42

False Alarms of Bug-finders: To see why VERIS-
MART achieves higher precision than bug-finders, we inspected
all 37 (=13+14+10) false positives reported by bug-finders.
Bug-finders reported 18 among 37 false positives due to
the lack of inferring transaction invariants, all of which are
avoided by VERISMART. The remaining 19 false positives
were due to imprecise handling of conditional statements. For
example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {
if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);
}

where the safety of min - msg.sender.balance is en-
sured by the preceding guard. Both OSIRIS and OYENTE in-
correctly reported that the subtraction is unsafe and integer
underflow would occur. This might be because OSIRIS and
OYENTE do not keep track of complex path conditions (e.g.,
involving structures in this case) for some engineering issues.
In contrast, VERISMART analyzes every conditional statement



1 function unlockReward(address addr, uint value) {
2 require(totalLocked[addr] > value);
3 require(locked[addr][msg.sender] >= value);
4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive
6 locked[addr][msg.sender] -= value;
7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.
False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently
unable to capture quantified transaction invariants. Consider
the unlockReward function in Figure 6. The subtraction
operation at line 5 seems to cause arithmetic underflow; the
value may be changed at line 4, and thereafter the relation
totalLocked[addr] > value seems not to hold any-
more. However, the subtraction is safe because the following
transaction invariant holds over the entire contract:

∀x.totalLocked[x] =
∑
i

locked[x][i] (2)

with an additional condition that computing the summa-
tion (

∑
i locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than
totalLocked[addr]. Because VERISMART considers
quantifier-free invariants only (Section III-C), it falsely re-
ported that an underflow would occur at line 5. OSIRIS and
OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-
nerabilities that were commonly missed by the four bug-
finders, and we found that the bug-finders often fail to detect
bugs when vulnerabilities could happen via inter-contract
function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {
require (total+ value <= TOKEN_LIMIT); // CVE bug
balances[holder] += value; // CVE bug
total += value; // CVE bug

}

There is a function call token.mint (...,...) in
a main contract, where token is a contract object. We
can see that all three addition operations possibly over-
flow with some inputs. For example, suppose total=1,
value=0xfff...ff, and TOKEN_LIMIT=10000. Then,
total+value overflows in unsigned 256-bit and thus
the safety checking statement can be bypassed. Next, if
balances[holder]=0, the holder can have tokens
more than the predetermined limit TOKEN_LIMIT. VERIS-
MART detected the bugs as it conservatively analyzes inter-
contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-
estingly, VERISMART unexpectedly identified six incorrectly-
reported CVE vulnerabilities. In Table III, the column #
Incorrect Queries denotes the number of queries incorrectly
reported to be vulnerable for each CVE ID. We could discover
them as VERISMART did not produce any alarms for those

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED
QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name #Incorrect #FP
Queries OSIRIS OYENTE VERISMART

2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

queries and then we manually confirmed that the CVE reports
are actually incorrect. We have submitted a request for revising
these issues to the CVE assignment team.

With the capability of automatically computing transaction
invariants, VERISMART successfully proved the safety for all
the incorrectly reported vulnerabilities (i.e., zero false posi-
tives). In other words, VERISMART could not have discovered
incorrect CVE reports if it were without transaction invariants.
The transaction invariants generated for proving the safety
were similar to those in Example 3 of Section II. In contrast,
existing bug-finders cannot be used for this purpose such as
proving the safety; for example, OSIRIS and OYENTE pro-
duced false positives for all of the 6 safe queries (i.e., the 6
incorrectly reported queries).

B. Comparison with Verifiers

We now compare VERISMART with SMTCHECKER [12]
and ZEUS [11], two recently-developed verifiers for smart
contracts. In particular, SMTCHECKER is the “official” veri-
fier for Ethereum smart contracts developed by the Ethereum
Foundation, which is available in the Solidity compiler. Like
VERISMART, the primary goal of SMTCHECKER is to detect
arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with
ZEUS and SMTCHECKER in this subsection is rather limited,
because ZEUS is not publicly available and SMTCHECKER is
currently an experimental tool that does not support the
full Solidity language. Since we cannot run ZEUS on our
dataset, the only option was to use the public evaluation
data [28] provided by the ZEUS authors. However, the public
data was not detailed enough to accurately interprete as the
ZEUS authors classify each benchmark contract simply as
‘safe’ or ‘unsafe’ without specific alarm information such
as line numbers. The only objective information we could
obtain from the data [28] was the fact that ZEUS produces
some (nonzero) number of false (arithmetic-overflow) alarms
on 40 contracts, and we decided to use those in our evaluation.
Starting with those 40 contracts, we removed duplicates with
trivial syntactic differences, resulting in a total of 25 unique
contracts (Table IV). Thus, the objective of our evaluation is
to run VERISMART and SMTCHECKER on the 25 contracts
to see how many of them can be successfully analyzed by
VERISMART and SMTCHECKER without false alarms. We
ran SMTCHECKER with the default setting.



TABLE IV
EVALUATION ON THE ZEUS DATASET. VERIFIED: A TOOL DETECTS ALL

BUGS WITHOUT FALSE POSITIVES (✓: SUCCESS, ✗: FAILURE)

No. LOC #Q VERISMART SMTCHECKER [12] ZEUS [11]
#Alarm #FP Verified #Alarm #FP Verified Verified

#1 42 3 0 0 ✓ 3 3 ✗ ✗
#2 78 2 1 0 ✓ 2 1 ✗ ✗
#3 75 7 2 0 ✓ 7 5 ✗ ✗
#4 70 7 0 0 ✓ 7 7 ✗ ✗
#5 103 8 0 0 ✓ 6 6 ✗ ✗
#6 141 5 2 0 ✓ internal error ✗
#7 74 6 1 0 ✓ 6 5 ✗ ✗
#8 84 6 0 0 ✓ 4 4 ✗ ✗
#9 82 6 0 0 ✓ 6 6 ✗ ✗
#10 99 2 1 0 ✓ internal error ✗
#11 171 15 9 0 ✓ internal error ✗
#12 139 7 0 0 ✓ internal error ✗
#13 139 7 0 0 ✓ internal error ✗
#14 139 7 0 0 ✓ internal error ✗
#15 139 7 0 0 ✓ internal error ✗
#16 141 16 10 0 ✓ internal error ✗
#17 153 5 0 0 ✓ internal error ✗
#18 139 7 0 0 ✓ internal error ✗
#19 113 4 0 0 ✓ 4 4 ✗ ✗
#20 40 3 0 0 ✓ 3 3 ✗ ✗
#21 59 3 0 0 ✓ internal error ✗
#22 28 3 1 0 ✓ 1 0 ✓ ✗
#23 19 3 0 0 ✓ 3 3 ✗ ✗
#24 457 30 13 6 ✗ internal error ✗
#25 17 3 0 0 ✓ 3 3 ✗ ✗

Total 2741 172 40 6 ✓:24 55 50 ✓: 1 ✓: 0
✗ : 1 ✗: 12 ✗:25

Results: Table IV shows the evaluation results on the
ZEUS dataset. For each contract, the table shows the number
of alarms (#Alarm), the number of false positives (#FP)
produced by VERISMART and SMTCHECKER. The column
Verified indicates whether each tool detected all bugs without
false positives (✓: success, ✗: failure).

The results show that VERISMART successfully addresses
limitations of ZEUS and SMTCHECKER. The 25 contracts
contain 172 arithmetic operations, where VERISMART pointed
out 40 operations as potential bugs. We have manually checked
that 34 out of total alarms are true positives. In benchmark #24,
VERISMART produced 6 false positives due to unsupported
invariants (quantified invariants and compound invariants, Sec-
tion III-C), and imprecise function call analysis. We manually
checked that the remaining 132 (=172-40) queries proven to be
safe by VERISMART are actually true negatives. By contrast,
according to the publicly available data [28], ZEUS produces
at least one false positives for each contract in Table IV
(i.e., ≥ 25 false alarms in total). SMTCHECKER could
only analyze 13 contracts as it raised internal errors for the
other 12 contracts, which is due to its immature support of
Solidity syntax [29]. Among 61 operations from 13 contracts,
SMTCHECKER succeeded to detect all 5 bugs in them thanks
to its exhaustive verification approach. However, it reported
55 alarms in total, of which 50 are false positives. In terms of
efficiency, SMTCHECKER took about 1 second per contract
and VERISMART took about 20 seconds per contract.

Importance of Transaction Invariants: The key enabler
for high precision was the ability of VERISMART to lever-
age transaction invariants. We also ran VERISMART without
inferring transaction invariants (i.e., using true as transaction
invariants); without transaction invariants, VERISMART fails

to verify 17 out of 25 contracts.

C. Case Study: Application to Other Types of Vulnerabilities

VERISMART can be used for analyzing other safety prop-
erties as well. To show this, we applied VERISMART to
finding bugs related to access control, where security-sensitive
variables can be manipulated by anyone for malicious use.
For example, consider the code snippet adapted from the
EtherCartel contract for crypto idle game (CVE 2018-11329):

function DrugDealer() public { ceoAddr = msg.sender; }
function buyDrugs () public payable {
ceoAddr.transfer(msg.value); // send Ether to ceoAddr
drugs[msg.sender] += ...; // buy drugs by paying Ether

}

Observe that the address-typed variable ceoAddr, the benefi-
ciary of Ether, can be taken by anyone who calls the function
DrugDealer. If an attacker becomes the beneficiary by
calling DrugDealer, the attacker might illegally take some
digital assets whenever benign users buy some digital assets
(i.e., drugs) by calling buyDrugs where transfer in it is
a built-in function that sends Ether to ceoAddr. This vulner-
ability was exploited in about 1 hour after deployment [30].

To detect this bug, we used VERISMART as follows. First,
we specified safety properties by automatically generating
the assertion assert(msg.sender==addr) right before
each assignment of the form addr=...;, where addr is a
global address-typed variable which is often security-sensitive
(excluding assignments in constructors, which typically set the
contract owners). Next, we ran VERISMART without any mod-
ification of its verification algorithm. With this simple exten-
sion, VERISMART worked effectively; it not only detected all
known CVE vulnerabilities (2018-10666, 2018-10705, 2018-
11329) but also proved the absence of this bug scenario for
55 contracts out of 60 from Table II. VERISMART could not
prove safety of the remaining 5 contracts due to the imprecise
specification described above.

D. Threats to Validity

We summarize limitations of our evaluation and consequent
threats to validity. Firstly, the benchmark contracts that we
used (60 CVE dataset + 25 ZEUS dataset) might not be repre-
sentative although we made effort to avoid bias in the datasets
(e.g., removal of duplicates). Secondly, the performance of
VERISMART may vary depending on the performance of the
off-the-shelf SMT solver (i.e., Z3) used internally or timeout
options used in the experiments. Thirdly, we did not study
the exploitability of bugs in this paper and did not compare
VERISMART and other tools in this regard. Thus, the results
may be different if those tools are evaluated with exploitability
in mind. Lastly, although we did our best, we realized that
manually classifying static analysis alarms into true or false
positives is extremely challenging and the classification can
be even subjective in a few cases.

VI. RELATED WORK

In this section, we place our work in the literature and clar-
ify our contributions regarding existing works. Section VI-A

https://ropsten.etherscan.io/address/0xc98f5c1b3b783794e646a8a29e2916668b7d9606#code
https://etherscan.io/address/0xa1b43b46befb2387d2df46cde82c3d454ef33c66#code
https://etherscan.io/address/0xd41f3b51e0c2d825a1178582d27c84dbfe48d1af#code
https://etherscan.io/address/0x8a70cf25cf32e728be9e30c20b2781f60cb0ed6d#code
https://ropsten.etherscan.io/address/0xcfe185ce294b443c16dd89f00527d8b25c45bf9d#code
https://etherscan.io/address/0xd9f7cd813983bd89d18015cc3022f7b9b97d26d4#code
https://ropsten.etherscan.io/address/0x218e5ea7e104385b0b91097519dfde91f15613c7#code
https://etherscan.io/address/0x4993CB95c7443bdC06155c5f5688Be9D8f6999a5#code
https://ropsten.etherscan.io/address/0xf48cf5ad04afa369fe1ae599a8f3699c712b0352#code
https://etherscan.io/address/0x168296bb09e24a88805cb9c33356536b980d3fc5#code
https://etherscan.io/address/0x8c65898cceaa73209f579653fa5523b7b13972bd#code
https://etherscan.io/address/0xe57a41170f18fab3248d623f06bd92b32260fae2#code
https://etherscan.io/address/0xE01B770235Bc5db653604e5519F048dF54490B5f#code
https://etherscan.io/address/0xd23f2533B726C9Cb1Fb9ed109b82e5A8F01c881e#code
https://etherscan.io/address/0x3ff8c78e266395d08f41ef1631391f0050d48081#code
https://etherscan.io/address/0x45d147c800d401350b24fc1cd5fbc98040b177c8#code
https://etherscan.io/address/0x3B6d241e1b38776C2eFE944E7012239ed59334c1#code
https://etherscan.io/address/0x873c58020bcb114b4fea456cef93aaf58e8e305d#code
https://etherscan.io/address/0x08711d3b02c8758f2fb3ab4e80228418a7f8e39c#code
https://etherscan.io/address/0xd7bf41bbc8979b3821851b871f055f4ae62b2299#code
https://etherscan.io/address/0x8a772004af0b8fca5e7093c6f277ba7b0e8fa97a#code
https://ropsten.etherscan.io/address/0x8d2c532d7d211816a2807a411f947b211569b68c#code
https://ropsten.etherscan.io/address/0xeb41d678879c735f22fce499d891d44c288829ea#code
https://etherscan.io/address/0xcd3e727275bc2f511822dc9a26bd7b0bbf161784#code
https://etherscan.io/address/0xDea48D521832780f5e437F7f744c94d2CdA85Af9#code


compares our work with existing smart contract analyses. Sec-
tion VI-B discusses verification techniques for other domains.

A. Analyzing Smart Contracts

Compared to existing techniques for analyzing smart con-
tracts [9], [26], [8], [18], [7], [31], [32], [33], [34], [12], [11],
[19], [20], [35], [36], [37], [38], [39], [40], VERISMART is
unique in that it achieves full automation, high precision, and
high recall at the same time. Below, we classify existing ap-
proaches into fully automated and semi-automated approaches.

Fully Automated Approaches: VERISMART belongs to
the class of fully automated tools based on static or dynamic
program analysis techniques that require no manual effort and
can be used by end-users who lack expertise in formal veri-
fication. Instead, these approaches focus on relatively simple
safety properties (e.g., overflows).

One popular approach is bug-finders based on symbolic
execution or fuzz testing. For example, OYENTE [9], [26],
MYTHRIL [8], OSIRIS [7], MANTICORE [10] and MA-
IAN [18] discover bugs by symbolically executing EVM byte-
code. OYENTE is the first such tool for Ethereum smart con-
tracts, which detects various bug patterns including arithmetic
bugs. MYTHRIL is also a well-known open-sourced tool for
detecting a variety of bugs by performing symbolic execution.
OSIRIS [7] is a tool that is specially designed for detecting
arithmetic bugs. MAIAN [18] focuses on finding violations
of trace properties. GASPER [31] uses symbolic execution
to identify gas-costly programming patterns. REGUARD [34]
and ContractFuzzer [41] use fuzz testing to detect common
security vulnerabilities. Although symbolic execution and fuzz
testing are effective for finding bugs, they inevitably miss
critical vulnerabilities, which is particularly undesirable for
safety-critical software like smart contracts.

Other approaches are verifiers that perform exhaustive anal-
yses based on static analysis or automatic program verification
techniques. ZEUS [11] is a sound static analyzer that can
detect arithmetic bugs or prove their absence. ZEUS leverages
abstract interpretation and software model checking [42].
SMTCHECKER [12] is the “official” verifier for Solidity
developed by the Ehtereum Foundation. Its primarily goal is to
verify the absence of arithmetic bugs such as integer over/un-
derflows and division-by-zeros [12] by performing SMT-
based bounded verification. Unlike VERISMART, ZEUS and
SMTCHECKER lack inter-transactional reasoning and this is
currently considered a key limitation of these tools [11], [12].

SECURIFY [19], MadMax [20], and Vandal [21] use declar-
ative static analysis techniques based on Datalog [43]. Besides
their inability to infer transaction invariants, one common
drawback of Datalog-based analyzers is that they cannot
describe general classes of (in particular, numerical) static
analyses and is inappropriate for finding arithmetic bugs.

Semi-Automated Approaches: Semi-automated tools for
formally specifying and verifying smart contracts have dif-
ferent goals. These approaches can prove a wide range of
functional properties at the expense of full automation; they
require users to manually provide specifications or invariants.

Hirai [36] formalizes the Ethereum Virtual Machine
(EVM) and provides a way to prove safety properties of
smart contracts in interactive theorem provers such as Is-
abelle/HOL [44]. Bharagavan et al. [37] provide a framework
for formally specifying and verifying functional correctness of
smart contracts using the F* proof assistant [45]. Grishchenko
et al. [38] also use F* to formalize small-step semantics of
EVM bytecode and express a number of security properties
of smart contracts. Hildenbrandt et al. [46] define formal
semantics of EVM using the K framework [47]. Amani
et al. [39] formalize EVM in Isabelle/HOL and provide a
program logic for reasoning about smart contracts. Lahiri et
al. [40] describe an approach for formal specification and
verification of smart contracts, where the primary goal is to
take a high-level specification expressed by a state machine
and to verify that the implementation meets the specification.

Manual Safety Checking: Some techniques (e.g., Safe-
Math [48]) depend on manual annotation of programs to
prevent bugs, which has two drawbacks. First, manual an-
notation is error-prone, hardly exhaustive, and sometimes
not recommended (e.g., decreasing readability, unnecessary
waste of gas fees). As a result, many smart contracts do
not perform manual safety checking exhaustively [7], [11].
Second, verification prevents bugs at compile time so that they
can be fixed before deployment, but manual checking detects
bugs only at runtime.

B. Analyzing Arithmetic Safety of Traditional Programs

Ensuring arithmetic safety has been studied extensively in
the program analysis and verification communities [49], [50],
[51], [52], [53], [54], [55], [56], [56], [57], [58]. Our work
differs from them in two ways. First, we focus on smart
contracts and provide a domain-specific algorithm. Second,
to our knowledge, our CEGIS-style algorithm for verifying
arithmetic safety is also new in this general context.

Astrée [49], [50] is a domain-specific static analyzer tailored
to flight-control software. Sparrow [51] and Frama-C [52],
[53] are domain-unaware static analyzers for C programs.
Astrée, Sparrow, and Frama-C are based on abstract inter-
pretation [59], [60]. Instead, we use a CEGIS-style algorithm
because existing abstract domains such as intervals [59] and
octagons [61] cannot capture domain-specific invariants (e.g.,
sum) of smart contracts. Furthermore, abstract interpretation
cannot infer invariants that are useful in practice but not in-
ductive with respect to their abstract semantics. While our ap-
proach is similar to the existing CEGIS approaches (e.g., [13],
[14], [15]), to the best of our knowledge, its application to
arithmetic safety verification has not been studied. Bounded
verification approaches (e.g., [62], [63]) are different from
our work as we perform unbounded verification. Our work is
different from symbolic execution-based techniques [54], [55],
[56], [56], [57], [58] or unsound static analysis [64], [65], as
we aim to detect all bugs. A few techniques aim to fix integer
overflow bugs [66], [67], [68], which may introduce unwanted
changes in programs though useful.



VII. CONCLUSION

As smart contracts are safety-critical, formally verifying their
correctness is of the greatest importance. In this paper, we
presented a new and powerful verification algorithm for smart
contracts. Its central feature is the ability to automatically
infer hidden, in particular transaction, invariants of smart
contracts and leverage them during the verification process.
We implemented the algorithm in a tool, VERISMART, for
verifying arithmetic safety of Ethereum smart contracts and
demonstrate its effectiveness on real-world smart contracts in
comparison with existing safety analyzers. Our work shows a
common yet significant shortcoming of existing approaches
(i.e., inability to infer and use transaction invariants) and
sheds light on the future development of automated tools for
analyzing smart contracts.
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APPENDIX

A. Preprocessing of Verification Conditions
Given a basic path p, let F be a verification condition

(either an inductiveness condition, i.e., F = GENVC(p).1,
or a safety condition, i.e., F ∈ GENVC(p).2) that contains
equalities of the form sum(x) = e for some mapping variable
x and expression e. For simplicity, we assume that F does not
contain primed instances (e.g., x′, x′′) of the mapping variable
x. Let I be the set of variables in F used as indices of x.
Then, we replace each equality sum(x) = e by G as follows.
If I = ∅, we define G to be G1 ∧G2 where G1 = (Rx = e),
G2 = Bx (Rx and Bx are fresh variables, see Section III-D). If
I = {i} (i.e., I is a singletone set), we define G to be G1∧G2

where G1 = (x[i]+Rx = e) and G2 = (x[i]+Rx ≥ Rx∧Bx).
Otherwise (i.e., I = {i1, . . . , in}, n ≥ 2), we define G to be
G1 ∧G2 where
G1 = ∧

a∈[1,m],
Pa=

{{i1,...},··· ,{ik,...}}

(
(

∧
Iu∈Pa

(
∧

i,j∈Iu

i = j) ∧
∧

Iu,Iv∈Pa,
Iu ̸=Iv

(
∧

i∈Iu,
j∈Iv

i ̸= j)) →

x[i1] + · · · + x[ik] + Rx = e
)

and
G2 = ∧

a∈[1,m],
Pa=

{{i1,...},··· ,{ik,...}}

(
(

∧
Iu∈Pa

(
∧

i,j∈Iu

i = j) ∧
∧

Iu,Iv∈Pa,
Iu ̸=Iv

(
∧

i∈Iu,
j∈Iv

i ̸= j)) →

Hx,i,k ∧ x[i1] + · · · + x[ik] + Rx ≥ Rx)
)
∧ Bx.

Hx,i,k is defined as true if k = 1, and defined as
∧k

c=2 x[i1]+
· · ·+ x[ic] ≥ x[ic] otherwise (i.e., k ≥ 2). P1, . . . , Pm are all
possible partitions of the index variable set I , where a partition
is a set of disjoint non-empty subsets of I such that the

union of the subsets equals I . For example, given I = {i, j},
we have two partitions: {{i, j}} and {{i}, {j}}. Also, given
I = {i, j, k}, we have five partitions: {{i, j, k}}, {{i}, {j, k}},
{{j}, {i, k}}, {{k}, {i, j}}, and {{i}, {j}, {k}}.

Intuitively, G1 asserts that the sum of distinct elements of x
equals e, and G2 asserts that overflows do not occur during
computing the sum of the distinct elements. More specifically,
using the partitions of I , we first consider all possible cases of
(in)equalities among the variables in I; for each partition Pa =
{I1, . . . , Ik} (where ⊎1≤i≤kIi = I), the variables in the same
subsets have the same values (i.e.,

∧
Iu∈Pa

(
∧

i,j∈Iu
i = j)),

and the variables in different subsets have different values (i.e.,∧
Iu,Iv∈Pa,Iu ̸=Iv

(
∧

i∈Iu,j∈Iv
i ̸= j)). Then, for each partition

case, we generate constraints on the distinct elements of x by
selecting an index variable from each subset.

Example 4: Given a basic path p, suppose F ∈ GENVC(p).2
is given as follows:

sum(y) = 100 ∧ y[i] ≥ v → y[j] + v ≥ y[j]

In this case, the index variable set for y is I = {i, j}, because
i and j are used as indices in y[i] and y[j], respectively. For
I , we have two partitions P1 = {{i, j}} and P2 = {{i}, {j}},
and thus we consider two cases: i = j from P1 and i ̸= j
from P2. Then, we replace sum(y) = 100 by G1 ∧G2 where
G1 is

(i ̸= j → y[i] + y[j] +Ry = 100) ∧ (i = j → y[i] +Ry = 100)

and G2 is
(i ̸= j → y[i] + y[j] ≥ y[i] ∧ y[i] + y[j] +Ry ≥ Ry)∧
(i = j → y[i] +Ry ≥ Ry) ∧By.

Finally, by replacing sum(y) = 100 in F by G1 ∧ G2, we
obtain the following F ′(

(i ̸= j → y[i] + y[j] +Ry = 100)∧
(i = j → y[i] +Ry = 100)∧
(i ̸= j → y[i] + y[j] ≥ y[i] ∧ y[i] + y[j] +Ry ≥ Ry)∧
(i = j → y[i] +Ry ≥ Ry) ∧By∧
y[i] ≥ v

)
→ y[j] + v ≥ y[j]

which is satisfiable iff the original formula F is satisfiable.

B. Proof of Proposition 1
Proof by contradiction. Assume p =⇒ q:

∀I.I |= ¬p ∨ q. (3)

From condition (ii) and (3), we have

Ip |= q (4)

where Ip is an interpretation that makes the evaluation of p
true (i.e., Ip |= p). From condition (ii), condition (iii), and
(4), we have a x-variant of Ip, denoted as I ′p, such that

I ′p : Ip ◁ {x 7→ v} |= ¬q (5)

where x ∈ FV(q) \ FV(p) and v ∈ DIp \ {αIp [x]}. Since
Ip |= p and x ̸∈ FV(p),

I ′p |= p. (6)

http://dl.acm.org/citation.cfm?id=1332044.1332098
http://doi.acm.org/10.1145/2535838.2535888
http://dl.acm.org/citation.cfm?id=2486788.2486892
http://dl.acm.org/citation.cfm?id=2486788.2486892
http://dl.acm.org/citation.cfm?id=3155562.3155693


Combining (5) and (6), we have I ′p |= ¬(¬p ∨ q), which
contradicts with the assumption (3). Thus p ≠⇒ q.

C. More Examples of Validity Templates
We provide three more examples that are important for

performance. We assume that formula F below is in CNF
(conjunctive normal form). We write c ∈ F for indicating that
F has clause c.

Example 5: Consider a template

sum(x) = n ∈ F, x[p] ≥ v ∈ F
F → x[q] + v ≥ x[q]

n+ n ≥ n

where x is a mapping variable that maps address-typed index
variables to 256-bit unsigned integer-typed variables, n is an
integer constant (where n+ n does not overflow in unsigned
256-bit), and p and q are address-typed variables. The template
above states that, when sum(x) = n and x[p] ≥ v hold in the
precondition F , x[q] + v ≥ x[q] also holds for any index
address-typed variable q. For example, we can use the rule to
check that the VC

· · · ∧ sum(a) = 100 ∧ · · · ∧ a[i] ≥ k ∧ · · · → a[j] + k ≥ a[j]

is valid without preprocessing the formula and invoking an
SMT solver.

Example 6: Consider a template:

sum(x) = y ∈ F, y = n ∈ F, x[p] ≥ v ∈ F
F → x[q] + v ≥ x[q]

n+ n ≥ n

where x is a mapping variable that maps address-typed index
variables to 256-bit unsigned integer-typed variables, y and v
are 256-bit unsigned integer-typed variables, n is an integer
constant (where n+n does not overflow in unsigned 256-bit),
and p and q are address-typed variables. Note that the template
above is similar to the one in Example 5, where sum(x) = n
is changed into a combination of sum(x) = y and y = n.
Using the template, we can prove the validity of the VC:

· · · ∧ sum(a) = b ∧ · · · ∧ b = 100 ∧ · · · ∧ a[i] ≥ k ∧ . . .
→ a[j] + k ≥ a[j]

Example 7: Consider a template:

F → n1 + (x%n2) ≥ n1
n1 + n2 ≥ n1

where x is a 256-bit unsigned integer-typed variables, and n1
and n2 are integer constants (where n1+n2 does not overflow
in unsigned 256-bit). Using the validity template above, we
can prove that · · · → 48 + (y%10) ≥ 48 is valid.
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