
SmartFix: Fixing Vulnerable Smart Contracts by Accelerating
Generate-and-Verify Repair using Statistical Models

Sunbeom So∗
Korea University
Republic of Korea

sunbeom_so@korea.ac.kr

Hakjoo Oh†
Korea University
Republic of Korea

hakjoo_oh@korea.ac.kr

ABSTRACT

We present SmartFix, a new technique for repairing vulnerable
smart contracts. There is an urgent need to develop automatic
bug-repair techniques for smart contracts, as smart contracts are
safety-critical software and manual debugging is burdensome and
error-prone. While several repair approaches have been proposed
recently, they are unsatisfactory since no existing techniques can
achieve high repairability, full automation, and safety guarantee
at the same time, posing significant problems for practical use.
SmartFix aims to address these shortcomings by using a “generate-
and-verify” approach that iteratively enumerates candidate patches
while validating their correctness by invoking a safety verifier. How-
ever, in this approach, a technical challenge arises as the search
space is huge and the verification-based patch validation is expen-
sive. To address this challenge, we present a novel technique for
accelerating the generate-and-verify repair procedure using sta-
tistical models derived from the verifier’s feedback. Experimental
results on real-world Ethereum smart contracts show that Smart-
Fix is able to achieve a fix success rate of 94.8% for critical classes
of vulnerabilities, far outperforming sGuard, the existing state-of-
the-art technique whose success rate is 65.4%.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

smart contract, generate-and-verify repair, statistical model
ACM Reference Format:

Sunbeom So and Hakjoo Oh. 2023. SmartFix: Fixing Vulnerable Smart Con-
tracts by Accelerating Generate-and-Verify Repair using Statistical Models.
In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616341

∗Current affiliation: Gwangju Institute of Science and Technology (GIST)
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616341

1 INTRODUCTION

Ensuring the safety of smart contracts is vital for trustworthy
blockchain ecosystems. Blockchain is a decentralized database in
which stored data is transparent and unchangeable. Smart contracts
are programs running on blockchain whose primary means is to
automatically fulfill obligations between untrusted parties. Inherit-
ing advantages of blockchain such as transparency, smart contracts
have received much attention from various domains such as digital
assets and supply chain [26]. Unfortunately, however, considerable
safety concerns remain for smart contracts; because smart con-
tracts often manage valuable assets, they easily become targets of
malicious users and, once exploited, even a single flaw can cause
huge financial damage (e.g., [2, 8]). To make matters worse, smart
contracts are immutable and hence their flaws cannot be fixed. It is
therefore crucially important to develop techniques for improving
the safety of smart contracts before deployment.

In this paper, we present SmartFix, a new technique for auto-
matically fixing vulnerable smart contracts. The last few years have
witnessed a large number of techniques for finding bugs in smart
contracts (e.g., [4, 10, 11, 13, 16, 20, 22, 24, 28, 31, 33, 40, 42, 44, 45,
47, 49, 50, 53–55]). Although they are useful for identifying safety
issues, manually fixing bugs detected by those safety analyzers
remains a time-consuming and error-prone task. Our aim is to re-
duce this burden with an automated technique that can safely and
accurately fix vulnerable smart contracts before they get deployed
on blockchain.

Existing Approaches. Recently, a few techniques have been
proposed to repair vulnerable smart contracts [21, 43, 57, 58] but
they are insufficient for practical use. This is because most of the
existing approaches [21, 43, 58] rely on a single repair strategy
for each bug type and hence fails to fix diverse patterns of bugs
(e.g., Section 2). An exception is SCRepair [57], a test-based repair
technique that supports multiple repair strategies for each bug type.
However, SCRepair fails to achieve full automation; it requires
users to provide test cases (i.e., transaction sequences with concrete
arguments for each transaction [24, 49]) for validating candidate
patches, but manually constructing robust test suites is nontrivial.
Furthermore, SCRepair does not guarantee the safety of gener-
ated patches because test cases are typically incomplete as repair
specification in practice [35, 48].

Our Approach. Unlike existing techniques, SmartFix aims to
achieve high repairability, full automation, and safety guarantee all
at once. To achieve this goal, we present a new bug-repair technique
that combines a “generate-and-verify” repair procedure with sta-
tistical models. Figure 1 illustrates our approach. SmartFix starts

https://doi.org/10.1145/3611643.3616341
https://doi.org/10.1145/3611643.3616341

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

Prior

Knowledge Base

Patch

Generator

Candidate

Patch

Statistical

Model

Analysis

Reports

Patch

Verifier

transferred for future repair tasks

Verifier

Solidity

Contract

Verification

Results

Statistical

Model

Patched

Contract

New

Knowledge Base

Figure 1: Overview of SmartFix.

by automatically obtaining analysis reports for a given smart con-
tract using a verifier (Section 3). Given the smart contract to repair
and its analysis reports, SmartFix basically alternates between the
“generate” and “verify” phases to fix diverse patterns of security
bugs automatically and safely; it iteratively performs enumerative
search for exploring various candidate patches and verification-
based patch validation for ensuring the safety of output patches.
This approach, however, poses a technical challenge to repair ef-
ficiency, as the search space for candidate patches is huge and
invoking a verifier is expensive. To address this challenge, we pro-
pose a machine learning-based technique that intelligently guides
the repair procedure using statistical models. We build statistical
models both online and offline; we construct a model online from
the verifier’s feedback (verification results such as the number of
alarms) on candidate patches for the contract under repair, and we
also derive a model offline from a prior knowledge base (abstract
forms of verification results obtained during the repair of other con-
tracts). By using learned statistical models to prioritize candidate
patches that are helpful in finding desired safe contracts, we can
greatly improve the performance of the repair procedure.

Results. Experimental results show that our technique is highly
effective at fixing security bugs in smart contracts. We implemented
our approach in a tool SmartFix, which generates patches at source
code level. SmartFix currently targets contracts written in So-
lidity [6], the most popular programming language for writing
Ethereum smart contracts. We extensively evaluated SmartFix on
four datasets. These datasets contain five types (Section 3) of known
security bugs that are arguably the most common yet critical ones
in Ethereum smart contracts: integer over/underflow, ether-leak,
suicidal, reentrancy, and improper use of tx.origin. In compari-
son with sGuard [43], the state-of-the-art bug-fixing tool for smart
contracts, the fix success rate of SmartFix was 94.8% on com-
monly supported classes of bugs, whereas the fix success rate of
sGuard was 65.4%. We also show that our learning-based tech-
nique is critical for high performance. Compared to the baseline
algorithm that explores candidate patches in order of increasing
size without using learned statistical models, our techniques col-
lectively improved the repair effectiveness by 56.7% in terms of
generating bug-free contracts.

1 function transferFrom (address from , address to, uint value)

public returns (bool success) {

2 if (value ==0) return false;

3 uint fromBalance = balance[from];

4 uint allowance = allowed[from][msg.sender];

5 (-) bool sufficientFunds = fromBalance <= value;

6 (-) bool sufficientAllowance = allowance <= value;

7 (-) bool overflowed = balance[to]+value > balance[to];

5’ (+) bool sufficientFunds = fromBalance >= value;

6’ (+) bool sufficientAllowance = allowance >= value;

7’ (+) bool overflowed = balance[to]+value < balance[to];

8 if (sufficientFunds && sufficientAllowance

9 && !overflowed) {

10 balance[to] += value;

11 balance[from] -= value;

12 allowed[from][msg.sender] -= value;

13 return true;

14 }

15 else {return false;}

16 }

Figure 2: A vulnerable function simplified from DimonCoin

(CVE-2018-11411). (-) indicates buggy lines in original source

code. (+) indicates patches produced by SmartFix.

Contributions. We make the following contributions.
• We present an effective approach for automatically fixing
vulnerable smart contracts. The key enabling technology is
a learning-based method for accelerating the generate-and-
verify procedure with statistical models.
• We conduct comprehensive evaluation of SmartFix in com-
parison with sGuard [43], the state-of-the-art repair tool for
smart contracts, using four datasets that contain five types
of annotated security bugs.
• For open science, we make the implementation of Smart-
Fix open-sourced and datasets publicly available (Section 8).

2 MOTIVATING EXAMPLE

We demonstrate usefulness of SmartFix with an example.
Figure 2 shows a buggy implementation of the transferFrom

function in the DimonCoin contract (CVE-2018-11411). The job of
transferFrom is to allow an agent (msg.sender) to transfer tokens
on behalf of an original token holder (from). The core functionality
is implemented at lines 10–12; when the agent (the transaction
sender, msg.sender) invokes the function, the agent’s allowance
(allowed[from][msg.sender]) and the original token holder’s
balance (balance[from]) decrease by value tokens (lines 11, 12),
and the recipient’s balance (balance[to]) increases by the same
amount of tokens (line 10). Observe that, due to flaws in conditional
expressions at lines 5–7, integer over/underflow bugs can happen
at lines 10–12, which can result in improper state changes. For
example, contrary to what the variable name sufficientFunds
indicates, the flawed condition allows from to send tokens when
from’s balance (balance[from]) is insufficient.

Existing techniques for repairing smart contracts [21, 43, 57, 58]
do not work well on this example. For example, approaches [21,
43, 58] that resort to a single repair strategy (i.e., inserting run-
time bound checks) could generate safe but functionally incorrect
patches, failing to eliminate root causes of bugs. Indeed, sGuard [43]

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

produces the following incorrect patch,1 which replaces all arith-
metic operators by bound checks (i.e., + by safeAdd and - by safe-
Sub) that raise exceptions when over/underflows occur at runtime:
2 if (value ==0) return false; // value !=0 holds afterwards

...

7 (-) bool overflowed = balance[to] + value > balance[to];

7’ (+) bool overflowed = safeAdd(balance[to], value) > balance[to];

8 if (sufficientFunds && sufficientAllowance

9 && !overflowed) { // deadcode: if-branch

10 (-) balance[to] += value;

11 (-) balance[from] -= value;

12 (-) allowed[from][msg.sender] -= value;

10’ (+) balance[to] = safeAdd(balance[to], value);

11’ (+) balance[from] = safeSub(balance[from], value);

12’ (+) allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], value);

13 return true;

14 } ...

where line 7 is changed to line 7′ and lines 10–12 are changed to
lines 10′–12′, respectively. While this patch ensures that the fixed
parts are free of integer over/underflow bugs, it does not provide
proper functionalities, making the function unusable. For example,
the patch introduces deadcode in the if-branch due to the two con-
flicting conditions: 𝑣𝑎𝑙𝑢𝑒 ≠ 0 and 𝑣𝑎𝑙𝑢𝑒 = 0. The former is imposed
by line 2. The latter implicitly holds by the combinations of the two:
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] + 𝑣𝑎𝑙𝑢𝑒 >= 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] (imposed by safeAdd at line
7′ in the above) and 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] + 𝑣𝑎𝑙𝑢𝑒 <= 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] (!over-
flowed at line 9 in the above). SCRepair [57] is also unsatisfactory
here; while SCRepair would be able to generate candidates that
change comparison operators as it supports multiple repair tem-
plates, it imposes the hard burden on users of building rigorous test
suites for validating the safety of candidate patches. Moreover, it
could generate unsafe patches when tests are incomplete.

SmartFix aims to address the shortcomings of existing tech-
niques, by a new generate-and-verify approach guided by statistical
models. In this example, SmartFix accurately fixes the bugs within
reasonable time; while iterating the repair-loop, it tries changing
comparison operators in lines 5–7 to the ones in lines 5′–7′ (Fig-
ure 2), and outputs the patch after verifying its safety. Moreover,
SmartFix can reject the incorrect patch made by sGuard through
verification-based patch validation (Section 3.1.2).

3 REPAIR ALGORITHM

In this section, we present the algorithm of SmartFix. Section 3.1 de-
scribes the basic “generate-and-verify” approach, which iteratively
generates candidate patches and verifies their safety. Section 3.2
explains how we accelerate this basic approach using statistical
models learned during the iterative process.

Vulnerability- and Regression Reports. Given a smart con-
tract 𝑠 , we assume we have two types of reports for it: vulnerability
report (VR) and regression report (RR). These reports can be ob-
tained by our patch verifier (Section 3.1.2) during the algorithm.
• VR is a set of 4-tuples (𝑣, 𝑥, 𝑙, es), where 𝑣 ∈ 𝑉 is a vulnerabil-
ity type, 𝑥 is the signature of the function that contains the

1This patch was obtained after we modified the original contract, as sGuard gen-
erated an execution error (heap out of memory) for the original contract. To make
sGuard produce patches somehow, we applied two changes to the contract: (1) re-
moving a loop in the contract (to prevent the runtime error from happening), and (2)
inserting an external function call that has dependencies on arithmetic operations
(sGuard does not generate any patches even after applying (1)—see Section 5.2).

Algorithm 1 Basic algorithm of SmartFix, and its enhanced ver-
sion based on machine learning (lines 6 and 13)
Input: A smart contract 𝑠0
Output: A patched contract 𝑠 , a knowledge base 𝐾on
1: (VR0, RR0) ← Verify(𝑠0)
2: (𝐷on, 𝐾on) ← (∅, ∅)
3: (s∗,VR∗, p∗) ← (⊥,VR0, 𝜖)
4: 𝐶 ← Extract(𝑠0,VR0) ⊲ §3.1.1
5: 𝑊 ← Generate(𝐶, 𝑠0, 𝜖) ⊲ §3.1.1
6: (+) Derive𝑀off from prior knowledge 𝐾off ⊲ §3.2.2
7: repeat
8: (𝑠, 𝑝) ← argmin(𝑠,𝑝) ∈𝑊 cost(𝑝)
9: 𝑊 ←𝑊 \ {(𝑠, 𝑝)}
10: (VR, RR) ← Verify(𝑠) ⊲ §3.1.2
11: if BetterCandidate((RR, RR0), (VR,VR∗), (𝑝, p∗)) then
12: (s∗,VR∗, p∗) ← (s,VR, p)
13: (+) (𝐷on, 𝐾on, 𝑀on, 𝑀off) ← Run Algorithm 2
14: 𝑊 ←𝑊 ∪ Generate(𝐶, 𝑠0, 𝑝) ⊲ §3.1.1
15: if |VR∗ | = 0 then ⊲ s∗ is a solution contract
16: 𝑊 ← {(𝑠, 𝑝) | (𝑠, 𝑝) ∈𝑊, |𝑝 | < |p∗ |}
17: until𝑊 = ∅ or timeout
18: return (s∗,Kon)

vulnerability, 𝑙 is the source code line where the vulnerability
is detected, and es is the expression (or the statement) related
to the vulnerability detected at 𝑙 . We write |VR| to denote
the number of alarms reported for 𝑠 .
In this paper, 𝑣 is one of the five bug-types that are most
common and critical in Solidity smart contracts: IO (integer
over/underflow), RE (reentrancy; vulnerabilities due to unex-
pected reentrancy from external contracts), EL (ether-leak;
hijacking of ethers in contracts), SU (suicidal; deactivation
of contracts by unauthorized users), and TX (improper use
of tx.origin in user authentication).
• RR is a set of pairs (𝑟, 𝑥), where 𝑟 ∈ 𝑅 is a functional regres-
sion type (Section 3.1.2) and 𝑥 is the signature of the function
where the potential regression is detected.

Goal. Given a contract 𝑠0 to repair, our goal is to transform 𝑠0
into a new contract 𝑠 proven to be free of bugs, which we call a
solution contract. Specifically, it should satisfy |VR| = 0 and RR =

RR0.
• |VR| = 0: means that the absence of bugs in 𝑠 is proven by
the patch verifier (Section 3.1.2) based on formal verification.
• RR = RR0: means 𝑠 is non-regressive, in that existing poten-
tially abnormal behaviors of 𝑠0 are preserved and no new
abnormal behaviors are detected in 𝑠 .

3.1 Basic Generate-and-Verify Repair

Algorithm 1 shows the basic “generate-and-verify” architecture of
SmartFix, which iteratively searches for solution contracts. The
input is a potentially vulnerable smart contract 𝑠0. The outputs
are a (partially) patched contract 𝑠 , and a new knowledge base 𝐾on
constructed during the repair of 𝑠0. For now, we assume that the
lines highlighted by (+) are ignored in Algorithm 1, which are

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

procedures for accelerating the overall repair process using learned
statistical models (Section 3.2).

In the preparation phase (lines 1–6), we first run the verifier
(Verify) to obtain the vulnerability- and regression reports for 𝑠0
(line 1). At line 2, we initialize𝐷on and𝐾on with the empty sets;𝐷on
is a training dataset for deriving a statistical model online (during
the repair-loop), and 𝐾on is the new knowledge base consisting
of the abstract form of the verifier’s feedback (Section 3.2.2). At
line 3, we initialize s∗ with ⊥ (null), VR∗ with VR0, and p∗ with
𝜖 (the empty sequence that indicates the null value of a patch),
respectively. Here, s∗ will be a patched contract that is best so far
in terms of safety and patch size, VR∗ is a vulnerability report for
the best contract s∗ (or VR0 if s∗ does not exist), and p∗ is a patch
applied to s∗. At line 4, we extract patch components 𝐶 , which
are the basic elements of patches. At line 5, we generate initial
candidate patches using 𝐶 , and initialize the workset𝑊 with them.
During the repair process,𝑊 stores candidate patches that will be
examined. More precisely,𝑊 maintains a set of pairs (𝑠, 𝑝), where
𝑝 is a candidate patch and 𝑠 is a candidate contract obtained by
applying 𝑝 to the original contract 𝑠0. Given a candidate (𝑠, 𝑝), if 𝑠
is a contract that has been added to𝑊 , we assume that (𝑠, 𝑝) is not
accumulated to𝑊 to avoid redundant attempts.

In the generate-and-verify repair-loop (lines 7–17), we first pick
the candidate (𝑠, 𝑝) with the least cost (line 8) and remove it from
𝑊 (line 9). In the baseline algorithm, the function cost prefers small-
sized patches: cost(𝑝) = |𝑝 |. In Section 3.2, we will enhance this
size-based cost function, as it is insufficient for making Smart-
Fix practical. At line 10, we validate 𝑠 , where the candidate patch 𝑝
is applied, by invoking the patch verifier. If 𝑝 is a “better” candidate
patch than p∗ (line 11) in terms of safety or patch size, we replace p∗
by 𝑝 and update other related data similarly (line 12). The predicate
BetterCandidate at line 11 is defined as follows:

BetterCandidate((RR, RR0), (VR,VR∗), (𝑝, p∗)) ⇐⇒
(RR = RR0 ∧ |VR| < |VR∗ |)
∨ (RR = RR0 ∧ |VR| = |VR∗ | ∧ |𝑝 | < |p∗ |)

That is, a patch 𝑝 is better than p∗ if: 𝑝 is non-regressive and safer
(the first case), or 𝑝 is non-regressive, equally safe, and simpler (the
second case). At line 14, we add new candidates to𝑊 . If s∗ is a
solution contract (line 15), we eliminate patches larger than p∗ to
find simpler solution contracts (line 16). The repair-loop repeats
until the workset becomes empty or a timeout occurs (line 17).

3.1.1 Patch Generation. We explain how to extract patch compo-
nents 𝐶 (Extract – line 4 in Algorithm 1) and generate patches 𝑃
(Generate – lines 5, 14).

Repair Template. An atomic repair template 𝑎 ∈ 𝐴 is the basic
unit of a patch component and a patch. We use the following atomic
repair templates to fix the five types of bugs.
• Insert(𝑙, 𝑠): inserts a statement 𝑠 in front of line 𝑙 .
• Rep(𝑙, 𝑒1, 𝑒2) replaces expressions 𝑒1 at 𝑙 with 𝑒2.
• AddM(𝑥,𝑚) adds a modifier whose name is𝑚 to a function
whose signature is 𝑥 .
• Move(𝑙, {𝑙1, · · · , 𝑙𝑛}) moves statements at 𝑙1, · · · , 𝑙𝑛 ahead of
the statement at 𝑙 .
• ToCnstr(𝑥) replaces a function, whose signature is 𝑥 , by a
constructor.

• ElseRevert(𝑙) inserts else {revert ();} at 𝑙 , where 𝑙 is the
line at which an if-statement without else-branches ends.

We devised these templates by carefully studying typical causes
of security bugs in smart contracts. Insert, Rep, AddM,Move are
templates that are commonly used to fix vulnerabilities in smart
contracts [21, 43, 57, 58]. In addition, we included the ToCnstr tem-
plate to fix EL and SU vulnerabilities whose root cause is a faulty
access control due to mistakenly named constructors (e.g., [33]).
We also included ElseRevert as an auxiliary template that is used in
combination withMove to fix RE bugs, as we observed cases where
putting the two templates together is essential for fixing RE bugs
safely and correctly.2

Component Extraction. A patch component 𝑐 ∈ 𝐶 is a se-
quence of atomic repair templates (i.e., 𝑐 = 𝑎1 · · ·𝑎𝑛). While most
components are single repair templates, to accelerate the repair pro-
cess, we also use components with multiple templates for several
special cases (e.g., fixing RE bugs often requires applying multiple
nonReentrant modifiers [21, 43]).

Given an original contract 𝑠0 and its vulnerability report VR0,
Extract(𝑠0,VR0) outputs𝐶 = 𝐶IO∪𝐶RE∪𝐶EL∪𝐶SU∪𝐶TX, where
each 𝐶𝑣 is a set of patch components for fixing bugs whose type is
𝑣 . Extract collects components from 𝑠0, according to vulnerability
types and locations reported in VR0. For example, given an alarm
(IO,−, 𝑙, 𝑎+𝑏) ∈ VR0 (i.e., an IO bug is detected at 𝑎+𝑏 in line 𝑙),𝐶IO
will include a component that inserts a bound check in front of line
𝑙 (i.e., Insert(𝑙, require(a + b ≥ a))). The component extraction
rules for each bug type are explained in the supplementary material.

Patch Enumeration. A patch 𝑝 is a sequence of patch compo-
nents (i.e., 𝑝 = 𝑐1 · · · 𝑐𝑛 ∈ 𝐶∗). Given a set of patch components
𝐶 and a candidate patch 𝑝 , Generate returns new candidates as
follows: Generate(𝐶, 𝑠0, 𝑝) = {(𝑠, 𝑝 ·𝑐) | 𝑐 ∈ 𝐶}. Here, 𝑝 ·𝑐 is a new
patch obtained by appending a patch component 𝑐 to the old patch
𝑝 , and 𝑠 is a new contract obtained by applying the new patch to
the original contract 𝑠0.

3.1.2 Patch Verification. Given a contract 𝑠 , the job of the patch
verifier (Verify – lines 1 and 10 in Algorithm 1) is to produceVR and
RR for 𝑠 , by performing safety verification and regression detection
on 𝑠 . We developed the patch verifier on top of VeriSmart [9, 50],
an open-sourced verification tool for Solidity contracts.

Safety Verification. We obtain the vulnerability report VR from
vulnerability-detection results of VeriSmart; its latest version [9]
supports the verification of the five types of bugs that we target.

SmartFix guarantees patch safety by design, as we use the patch
verifier based on the formal verification method [50] that can prove
the absence of bugs; if there are bugs reported from 𝑠0 but not from
a patched contract, it is guaranteed that the original bugs from
𝑠0 were safely fixed w.r.t. safety conditions defined in the verifier.
For example, SmartFix outputs the patches in Figure 2, only after
the patch verifier has formally proven that the safety condition
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] + 𝑣𝑎𝑙𝑢𝑒 ≥ 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 [𝑡𝑜] is always true at line 10 and
therefore line 10 is free of IO bugs.

2E.g., https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/reentran
cy/0xbaf51e761510c1a11bf48dd87c0307ac8a8c8a4f.sol

https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/reentrancy/0xbaf51e761510c1a11bf48dd87c0307ac8a8c8a4f.sol
https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/reentrancy/0xbaf51e761510c1a11bf48dd87c0307ac8a8c8a4f.sol

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Regression Detection. In automatic program repair (APR) re-
search, ensuring patch correctness is an open problem [23], as
complete formal specifications on functional correctness are not
readily available.

We aim to mitigate this challenge as much as possible by elim-
inating likely incorrect patches. Specifically, we detect incorrect
patches by validating them against predefined regression conditions.
For example, suppose a patched function consists of the following
statements:

require(x <= a); require(x >= a); y := x − a

where the underlined statement is a patch to fix the underflow
at x-a in the last statement. Observe that this patch introduces a
regression that is absent in the original function; the final statement
always assigns the zero value to y, as the condition 𝑥 = 𝑎 holds due
to the improper combinations of the two conditions in the first two
statements: 𝑥 ≤ 𝑎 and 𝑥 ≥ 𝑎. To detect this regression, we insert
the assertion statement assert (y==0) after the last assignment
during the preprocessing step:

require(x <= a); require(x >= a); y := x − a; assert(y == 0)

Here, y==0 is a regression condition to see whether y always gets
assigned 0, which would be typically an abnormal behavior. Next, in
the regression detection step, we generate the following verification
condition and check its validity [12]:

𝑥 ≤ 𝑎 ∧ 𝑥 ≥ 𝑎 ∧ 𝑦 = 𝑥 − 𝑎 → 𝑦 = 0.

Here, since the condition is valid (i.e., the likely abnormal property
always holds), we include this result in RR, i.e., (ZA, 𝑓) ∈ RR, where
ZA denotes the regression type for zero-value assignments and
𝑓 is a signature of the patched function. Finally, we decide that
the patch is regressive because this behavior exists in the patched
function only (i.e., RR ≠ RR0 where RR0 = ∅).

We detect three kinds of incorrect patches, which can appear in
our search space due to improper overlaps of conditionals: deadcode
(e.g., Section 2), zero-value assignment (e.g., the example above),
and effectless assignment (the l-value’s state of an assignment never
changes). We implemented a regression detector, as a post-analysis
procedure invoked after the safety verification. For efficiency, we
perform regression detection at program locations likely to be bene-
ficial only. For example, we insert an assertion assert(false) after
guard-statements to detect deadcode by checking the feasibility of
paths, but do not insert it after assignments.

3.2 Guiding Repair using Statistical Models

We present the main technical contributions of this paper. We
enhance the basic algorithm using statistical models learned at
lines 6 and 13 in Algorithm 1. At line 6, we construct a unified prior
knowledge base 𝐾off by collecting knowledge bases obtained from
past repair tasks, and derive a model𝑀off offline (before entering
the repair-loop) from 𝐾off . The process for line 13 is described in
Algorithm 2.

At line 1 in Algorithm 2, we compute score, which we call safety
score, is a real number that quantifies how close 𝑝 is to solution
patches (patches necessary for generating solution contracts); the
definition of the function 𝑄 will be explained soon. At line 2, we
generate a training data 𝑑 based on the verifier’s feedback (score),

Algorithm 2 Learning phase of SmartFix
Input: a set of patch components (𝐶), verification results

(VR0,VR, RR0, RR), a candidate patch 𝑝 , learning-related data
(𝐷on, 𝐾on, 𝑀on, 𝑀off)

Output: (𝐷on, 𝐾on, 𝑀on, 𝑀off)
1: score← 𝑄 (𝑝,VR0,VR, RR0, RR)
2: 𝐷on ← 𝐷on ∪ {𝑑} ⊲ 𝑑 = (𝐹𝐶 (𝑝), score), §3.2.1
3: Derive𝑀on from 𝐷on
4: 𝐾on ← 𝐾on ∪ {𝑘} ⊲ 𝑘 = (𝛼 (𝑝), score), §3.2.2
5: Set 𝑀off to ⊥ if 𝑠𝑐𝑜𝑟𝑒 < 0 or a solution contract has not been

generated within a predetermined loop bound.
6: return (𝐷on, 𝐾on, 𝑀on, 𝑀off)

and add 𝑑 to 𝐷on. At line 3, we derive a model𝑀on online (during
the iteration of the repair-loop) from 𝐷on. At line 4, we create a new
knowledge data 𝑘 based on score, and accumulate 𝑘 to 𝐾on. A model
𝑀off derived offline could misguide the repair procedure, because,
for example, a contract under repair could have characteristics
different from prior contracts. Thus, at line 5, if at least one of
the two conditions holds, we consider that the model𝑀off learned
offline is unlikely to be useful in the next iterations, and thus we
invalidate𝑀off ; in the implementation, the pre-set loop bound is 5.

QuantifyingVerifier’s Feedback. Given a candidate patch 𝑝 , its
verification results (VR, RR), and verification results for the original
contract (VR0, RR0), the function 𝑄 computes a safety score (𝑠𝑐𝑜𝑟𝑒)
for 𝑝 as follows:

𝑄 (𝑝,VR0,VR, RR0, RR) ={
|VR0 |− |VR |−𝛾∗|𝑝 |

|VR0 | if RR = RR0 and |VR| ≤ |VR0 |
−(1 + |𝑝 |) if RR ≠ RR0 or |VR| > |VR0 |.

In short, the main metric of𝑄 is the alarm reduction rate against the
number of alarms from the original contract. In the first case where
𝑝 is a non-regressive (RR = RR0) and equally or more safe (|VR| ≤
|VR0 |) candidate, we compute a safety score by subtracting the
scaled patch size (𝛾∗|𝑝 |) from the reduced number of alarms (|VR0 |−
|VR|) and normalizing the result with |VR0 |. Here, subtracting𝛾 ∗ |𝑝 |
means that we prefer smaller patches. This is because, as in previous
studies (e.g., [41, 57]) on automatic program repair, we observed
that, when compared to smaller patches that are equally safe, larger
patches are likely to contain redundant or incorrect patches. In
the current implementation, 𝛾 = 0.5. In the second case where 𝑝
is a regressive or more unsafe patch, we compute a negative score
−(1 + |𝑝 |) for 𝑝 .

In the remaining of this section, we explain the following: how
to learn models online and offline (Section 3.2.1 and 3.2.2), and how
to use learned models (Section 3.2.3).

3.2.1 Learning a Model Online. To build a statistical regression
model𝑀on online, we produce a training data 𝑑 ∈ 𝐷on:

𝑑 = (⟨𝑣1, · · · , 𝑣𝑛⟩, score).

score is a safety score for 𝑝 (computed at line 1 in Algorithm 2).
⟨𝑣1, · · · , 𝑣𝑛⟩ ∈ {0, 1}𝑛 is a feature vector representation for 𝑝 . Sup-
pose a set of patch components 𝐶 = {𝑐1, · · · , 𝑐𝑛} is given, where
each component 𝑐𝑖 has a unique identifier 𝑖 ∈ [1, 𝑛]. The feature

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

vector for 𝑝 is obtained by converting 𝑝 using an encoding function
𝐹𝐶 parameterized by 𝐶:

𝐹𝐶 (𝑝) = ⟨𝑣1, · · · , 𝑣𝑛⟩
where 𝑣𝑖 is 1 (resp., 0) if 𝑝 contains (resp., does not contain) an 𝑖-th
patch component 𝑐𝑖 . Our feature representation method is inspired
from [25], which used a similar representation in the context of
learning-based program debloating.

Given a training dataset 𝐷on iteratively collected this way,𝑀on
can be derived using an off-the-shelf supervised learning algorithm.
In the current implementation, we used the one for learning a linear
regression model (Section 4).

3.2.2 Learning a Model Offline. We also try to accelerate the repair
procedure using prior knowledge. More precisely, given repair
templates that were used to fix some vulnerabilities in past repair
attempts, we aim to quickly fix similar vulnerabilities using similar
templates. We first explain how we build a new knowledge base
(line 4 in Algorithm 2), and then describe how we derive a statistical
model from an existing knowledge base (line 6 in Algorithm 1).

Constructing Knowledge. Given a safety score (score) for a
candidate patch 𝑝 (line 1 in Algorithm 2), we generate a knowledge
data 𝑘 = (𝑝, score), where 𝑝 is an abstract form of 𝑝 for abstracting
away its code-specific information (e.g., line numbers, variable
names) that would not be directly applicable to new contracts. We
convert a patch 𝑝 = 𝑐𝑥1 · · · 𝑐𝑥𝑚 (𝑥1, · · · , 𝑥𝑚 ∈ [1, 𝑛],𝑛 = |𝐶 |) into an
abstract patch 𝑝 using a function 𝛼 (i.e., 𝛼 (𝑝) = 𝑝), which is defined
as follows: 𝛼 (𝑝) = 𝛼 ′ (𝑐𝑥1) · · ·𝛼 ′ (𝑐𝑥𝑚). Here, 𝛼 ′ is a function that
returns an abstract patch component for a given patch component
𝑐 = 𝑎1 · · ·𝑎𝑛 as follows:
𝛼 ′ (𝑐) =

�Insert(𝐻 (𝑓𝑙), Ts (𝑠′)) if 𝑐 = Insert(𝑙, 𝑠′)
R̂ep(𝐻 (𝑓𝑙), Te (𝑒1),Op (𝑒1), Te (𝑒2),Op (𝑒2)) if 𝑐 = Rep(𝑙, 𝑒1, 𝑒2)�
AddM(𝐻 (𝑓𝑥), 𝐻 (𝑚)) if 𝑐 = AddM(𝑥,𝑚),𝑚 ≠ nr

N̂R(𝐻 (𝑓𝑥)) if 𝑐 = AddM(𝑥,𝑚),𝑚 = nr�Move(𝐻 (𝑓𝑙)) if 𝑐 = Move(𝑙, {𝑙1, · · · , 𝑙𝑛 })�ToCnstr(𝐻 (𝑓𝑥)) if 𝑐 = ToCnstr(𝑥)�
ElseRevert(𝐻 (𝑓𝑙)) if 𝑐 = ElseRevert(𝑙)
𝛼 ′ (𝑎1) · · · 𝛼 ′ (𝑎𝑛) if 𝑐 = 𝑎1 · · · 𝑎𝑛

Each abstract component is built by an abstract component con-
structor. For example, N̂R is a constructor for abstracting compo-
nents that apply nonReentrant (denoted nr in the above) modifiers
for fixing RE bugs (e.g., [43]).

In short, 𝛼 ′ abstracts information on patch locations (line num-
bers, function signatures) into function-level features, and patch
expressions/statements into types of variables in them. 𝑓𝑙 is a func-
tion that contains line 𝑙 , and 𝑓𝑥 is a function whose signature is 𝑥 .
𝑇𝑠 (𝑠′) (resp., 𝑇𝑒 (𝑒′)) returns a set of types of global variables that
appear in a statement 𝑠′ (resp., an expression 𝑒′). Op(𝑒) computes
the set of binary operators in 𝑒 . Given a function 𝑓 (or a modifier),
𝐻 (𝑓) returns its feature:

𝐻 (𝑓) = (𝐷 (𝑓),𝑈 (𝑓), 𝑃 (𝑓), 𝐿(𝑓), 𝐸 (𝑓), 𝑋 (𝑓))
where 𝐷 (𝑓) and 𝑈 (𝑓) return the set of types of global variables
defined via assignments and used via guards in 𝑓 , and the rest
are predicates (return 1 if true, and 0 if false) that check whether a
function contains the payablemodifier (𝑃), loops (𝐿), ether-sending

1 function mintToken (address to, uint value) public

2 returns (bool success) {

3 require (msg.sender == owner);

4’ (+) require(totalSupply + value >= totalSupply); // fix

4 totalSupply += value; // overflow

5 balances[to] += value; // overflow

6 }

(a) A vulnerable code snippet and fix for it.

1 function mintToken (address to, uint value) public

2 returns (bool success) {

3 require (msg.sender == owner);

4 balances[to] += value; // overflow

5 totalSupply += value; // overflow

6 }

(b) A similar (statements reversed) code snippet to repair.

Figure 3: Code snippets for explaining offline-learning (Ex-

ample 1 and 2).

statements (𝐸), and contract-deactivating statements (𝑋) such as
selfdestruct in Solidity. The design of the function feature is
mostly inspired from [49], where similar abstractions were used to
learn probability distributions on vulnerable transaction sequences.

Example 1. Let 𝑝 = Insert(4, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑣𝑎𝑙𝑢𝑒 >=

𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦)) be a candidate patch in Figure 3(a). Suppose the types of
the variables are the following: address (𝑜𝑤𝑛𝑒𝑟), uint (𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦),
and mapping(address=>uint) (𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠). Then, we have 𝑝 = 𝛼 (𝑝)
that is an abstract patch for 𝑝 :

𝑝 = �Insert((𝐷 (𝑓)︷ ︸︸ ︷
{uint, mapping(address => uint) },

𝑈 (𝑓)︷ ︸︸ ︷
{address}, 0, 0, 0, 0︸ ︷︷ ︸

𝐻 (𝑓)

), {uint}︸ ︷︷ ︸
𝑇𝑠 (𝑠′)

)

where 𝑓 denotes the function mintToken in Figure 3(a) and 𝑠′ =

𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑣𝑎𝑙𝑢𝑒 >= 𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦). Finally, assuming a
safety score for 𝑝 is 0.45, we obtain a knowledge data 𝑘 = (𝑝, 0.45).

Deriving a Model from Knowledge. To derive𝑀off (line 6 in
Algorithm 1), we first construct a unified prior knowledge base 𝐾off
by collecting all knowledge bases from past repair attempts, and
transform it into a training dataset 𝐷off :

𝐷off = {(⟨𝑣1, · · · , 𝑣𝑛⟩, 𝑠𝑐𝑜𝑟𝑒) | (𝑝, 𝑠𝑐𝑜𝑟𝑒) ∈ 𝐾off }

where ⟨𝑣1, · · · , 𝑣𝑛⟩ ∈ {0, 1}𝑛 is a feature vector for 𝑝 . We obtain
⟨𝑣1, · · · , 𝑣𝑛⟩ using a feature encoding function𝐺𝐶 (i.e., ⟨𝑣1, · · · , 𝑣𝑛⟩ =
𝐺𝐶 (𝑝)). 𝐺𝐶 takes an abstract patch 𝑝 and converts it into a binary
feature vector that is valid in the context of a contract under repair
(in that parameterized by 𝐶 = {𝑐1, · · · , 𝑐𝑛}):

𝐺𝐶 (𝑝) = ⟨𝑣1, · · · , 𝑣𝑛⟩

where 𝑣𝑖 is 1 (resp., 0) if 𝑝 contains (resp., does not contain) an
abstract version of an 𝑖-th patch component 𝑐𝑖 (𝑖 ∈ [1, 𝑛]). Once
𝐷off is generated, we can derive𝑀off by invoking an off-the-shelf
supervised learning algorithm on 𝐷off as in Section 3.2.1.

Example 2. Suppose our goal is to fix the code in Figure 3(b).
Suppose we have a knowledge base 𝐾off = {𝑘}, where 𝑘 = (𝑝, 0.45)
is the knowledge data made in Example 1. Suppose we have a set of

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

patch components 𝐶 = {𝑐1, 𝑐2} where
𝑐1 = Insert(4, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 [𝑡𝑜] + 𝑣𝑎𝑙𝑢𝑒 >= 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 [𝑡𝑜])),
𝑐2 = Insert(5, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒 (𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦 + 𝑣𝑎𝑙𝑢𝑒 >= 𝑡𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦)) .

Note that 𝑝 contains 𝛼 ′ (𝑐2) but does not contain 𝛼 ′ (𝑐1):
𝛼 ′ (𝑐1) = �Insert(𝐻 (𝑓 ′), {mapping(address => uint) }︸ ︷︷ ︸

𝑇𝑠 (𝑠1)

),

𝛼 ′ (𝑐2) = �Insert(𝐻 (𝑓 ′), {uint}︸ ︷︷ ︸
𝑇𝑠 (𝑠2)

)

where 𝑓 ′ denotes the function mintToken in Figure 3(b), and 𝐻 (𝑓 ′)
equals 𝐻 (𝑓) in Example 1, and 𝑠1 (resp., 𝑠2) denotes the statement
in 𝑐1 (resp., 𝑐2). Thus, 𝐺𝐶 (𝑝), the feature vector of 𝑝 , is ⟨0, 1⟩. As a
result, we obtain 𝐷off = {(⟨0, 1⟩, 0.45)} from 𝐾off .

3.2.3 Using Learned Models. We redefine the function cost (line
8 in Algorithm 1) using learned statistical regression models (𝑀on,
𝑀off) to effectively guide the selection of likely candidate patches:
cost(𝑝) = −score(𝑝) where score computes an expected safety
score for a patch 𝑝:

score(𝑝) =
𝑀off (𝐹𝐶 (𝑝)) if𝑀off ≠ ⊥
−|𝑝 | if𝑀off = ⊥ and ∃𝑒 ∈ 𝐸.𝑒 ∉ {𝑣 | (𝑣,−) ∈ 𝐷on}
𝑀on (𝐹𝐶 (𝑝)) if𝑀off = ⊥ and ∀𝑒 ∈ 𝐸.𝑒 ∈ {𝑣 | (𝑣,−) ∈ 𝐷on}.

In the above, 𝐸 denotes the set of all possible one-hot vectors in 𝑛
(= |𝐶 |) dimensions: 𝐸 = {𝑖 | 𝑖 ∈ {0, 1}𝑛, 𝑖 = ⟨𝑖1, · · · , 𝑖𝑛⟩,

∑𝑛
𝑗=1 𝑖 𝑗 =

1}. In the first case where𝑀off is learned (𝑀off ≠ ⊥), we prioritize
candidates using𝑀off . In the second case where𝑀off is not avail-
able and impacts of some patch components are unknown yet, we
perform size-based estimations. In the third case where𝑀off = ⊥
and impacts of all patch components are known, we search by pri-
oritizing likely patches according to 𝑀on. Note that the function
cost is updated at each iteration in accordance with changes of𝑀on
and𝑀off . Further note that, in the definition of cost, we negate the
score’s output, as our algorithm selects a candidate with the least
cost at each iteration (line 8 in Algorithm 1).

3.3 Applicability to Other Types of Bugs

Although we formalized and implemented our approach for the
five critical classes of bugs in Solidity smart contracts, the core
principle of our technique (machine learning-based patch prioriti-
zation – Section 3.2) can be extended to support fixing other types
of bugs as well. As one aspect that supports this claim, we note that
the function 𝑄 (line 1 in Algorithm 2), which quantifies the veri-
fier’s feedback, does not use any information on bug types. To fix
other kinds of bugs, two major extensions are necessary: devising
patch search space (Section 3.1.1) for other bugs, and extending the
analysis scope of the verifier (Section 3.1.2).

4 IMPLEMENTATION AND OPTIMIZATION

Implementation. We implemented SmartFix in OCaml on top
of VeriSmart [50], an open-sourced [9] verification tool for smart
contracts written in Solidity [6]. To learn and use statistical regres-
sion models (Section 3.2), we wrote a Python script that uses the
scikit-learn library [14]. To invoke learning-related functions in the
Python script from OCaml code, we used pyml [5].

SmartFix provides patch safety (Section 3.1.2) by design, but
it might produce unsafe patches for two reasons in practice. First,
to produce simple patches as much as possible, we used several
heuristics for filtering benign IO and RE alarms; they can be found
in the supplementarymaterial. Such intentionally ignored alarms do
not appear in VR. Second, the underlying verifier may be unsound
for some tricky features (e.g., inline assembly [50]). Nonetheless,
we note that these two potential sources do not significantly harm
the practicality of SmartFix; in our experiments (Section 5), we
have not observed unsafe patches generated due to these reasons.

To accelerate the repair process, similar to [52], when enumer-
ating patches (Section 3.1.1), we prune away candidates likely to
perform nonsensical actions (e.g., inserting the same bound checks
at the same lines).

While the basic approach (Section 3.1) almost immediately ter-
minates once a solution contract is found (as it enumerates patches
in increasing order and𝑊 becomes empty by lines 15–16 in Al-
gorithm 1), the learning-based approach (Section 3.2) may not. To
balance the efficient termination and the patch simplicity, once the
first solution contract is found, the repair-loop repeats 𝑌 (10 in the
implementation) times at most.

Acceleration via Differential Verification. The verification-
based patch validation (line 10 in Algorithm 1) ensures the patch
safety, but poses a significant performance problem to SmartFix.
We devised a method based on differential verification to further
mitigate this issue. In particular, our technique aims to reduce the
patch validation cost in the learning-based enhanced algorithms
(Section 3.2), which arises due to additional 𝑌 (=10) iterations for
finding simpler patches when solution contracts are already found.

Suppose a solution contract has been generated and its invariant
is 𝐼 (can be obtained as a part of outputs of VeriSmart [9, 50]).
Then, given a candidate contract 𝑠 , we first check whether 𝐼 is an
inductive invariant of 𝑠 or not. If not, we immediately break out of
the current iteration of the repair-loop without performing safety
verification and regression detection on 𝑠 (typically more expensive
than inductiveness checking), and start the new iteration (i.e., pick
another candidate contract 𝑠′ at line 8 in Algorithm 1). That is, we
expect the invariant of a solution contract to hold in other solution
contracts too. By precisely detecting unpromising candidates and
early stopping verification for them this way, we can effectively
improve the repair performance.

5 EVALUATION

We evaluate SmartFix to answer the following research questions.

• How effectively does SmartFix repair vulnerable smart con-
tracts? How does SmartFix compare to sGuard [43], the
state-of-the-art repair tool for smart contracts? (Section 5.2)
• Is using statistical models important for improving the per-
formance of SmartFix? (Section 5.3)

5.1 Experimental Setup

Benchmark. We collected four datasets with annotated bugs.

• IO Bench: 200 contracts that contain IO bugs, which are
randomly selected out of 487 CVE-reported contracts [1].

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

• EL-SU Bench: 104 contracts from [49], which contain EL and
SU vulnerabilities.
• RE Bench: 47 contracts with RE vulnerabilities from three
sources: 28 contracts from [15, 19], and 19 contracts col-
lected by us (2 contracts from the wild, and 17 contracts with
injected likely bugs).
• TX Bench: 10 contracts with TX vulnerabilities: one test con-
tract from [19] and 9 contracts with injected likely bugs.

In total, the source lines of the benchmark contracts range from
16 to 1,225, including 36 contracts that are relatively large (> 500
lines). On average, the benchmarks consist of 259 lines.

To conduct a more meaningful experiment, we applied modifica-
tions to the contracts from prior works [15, 19] when constructing
the RE Bench. As several contracts from [19] were “buggy” and
indeed safe from RE although they contain vulnerable code pat-
terns, we modified the code so that the intended vulnerabilities can
be triggered. We deduplicated contracts from [15, 19] (e.g., dupli-
cated addresses, minor syntactic differences).We excluded contracts
where the root causes of bugs are not related to reentrancy.

For more extensive evaluation on datasets that contain trust-
ful ground-truth bugs, we constructed our own benchmarks from
real-world contracts deployed on the Ethereum blockchain [3]. For
RE Bench, we collected 2 contracts that contain RE bugs without
modifications and constructed 17 contracts by manually injecting
likely bugs in deployed contracts. For TX Bench, we constructed
9 contracts by injecting likely bugs. We tried hard to inject realis-
tic bugs as much as possible. In the supplementary material, we
provide concrete bug-injection patterns that we used. Our bench-
marks, including the refined benchmark set, are publicly available
(Section 8).

Comparison Tool. We evaluate the effectiveness of SmartFix in
comparison with sGuard [43], the state-of-the-art bug-repair tool
for Solidity contracts. We could not consider SCRepair [57] as we
failed to run it in our environments despite our best efforts. We
did not consider EVM bytecode-level patching tools (Elysium [21],
SMARTSHIELD [58]), since comprehending bytecode-level changes
is difficult [46] and thus evaluating their patch correctness objec-
tively is nontrivial.

Given a potentially vulnerable contract, both SmartFix (Sec-
tion 3) and sGuard aim to make it vulnerability-free. The overall
workflow of sGuard is the following. It first detects all potential
bugs by using relatively light-weight static analyses (control- and
data-dependency analyses to identify certain vulnerable instruc-
tions that have dependencies to external function calls [43]). Next,
it applies bug type-specific runtime checks to fix the detected bugs.

For the experiment, we used the latest version [7] of sGuard as
of February 2023. sGuard currently supports fixing arithmetic vul-
nerabilities (IO and division-by-zero), RE, and TX. Since its current
implementation does not have options for specifying Solidity com-
piler versions and the names of main contracts to be patched, we
modified its source code to take those information as inputs; the
modified code is publicly available (Section 8).

Evaluating Correctness. Assuring patch correctness remains
an open problem in automatic program repair techniques [23].

SmartFix and sGuard are no exceptions. Thus, we manually vali-
dated the correctness of patches produced by each tool. In particular,
we inspected whether patches safely fix vulnerabilities and do not
damage any functionalities of original implementations.

Hardware and Execution Options. All experiments were con-
ducted on Ubuntu machine with AMD Ryzen Threadripper 3970X
CPU (3.7 GHz) (32 cores and 64 threads in total) and 62GB of mem-
ory. We ran SmartFix using 40 threads at most, after putting all
361 contracts together in random order. We ran sGuard using 40
threads at most on 257 contracts, excluding 104 contracts in EL-SU

Bench as it does not support fixing EL and SU. For SmartFix, we
set timeout to 90 minutes for the total repair time (Algorithm 1).
We allocated 150 seconds for each invocation of the verifier and
the external timeout to 20 minutes; technically, the former is a
time budget for the safety verification [50] and regression checking
is done during a separate time budget (Section 3.1.2). We set the
timeout to 20 seconds per Z3 [18] (v. 4.11.2) invocation from the
verifier. For both tools, we set the external timeout to 100 minutes.

5.2 Effectiveness of SmartFix

Overall Results. Table 1 shows repair results on fixing anno-
tated bugs, which are likely to be more impactful bugs in contracts.
The column “Fix Rate” (#C

#B
) shows end-to-end fix rates on annotated

bugs in entire contracts. In our experiment, sGuard [43] generated
execution errors (uncompilable patched contracts, no outputs are
generated, and timeout) on non-negligible number of contracts: 50
for IO Bench, 17 for RE Bench, and 8 for TX Bench. Since these
failures vacuously lowered the fix rate of sGuard, in an effort to
favorably evaluate sGuard, we also report “Success Rate” (#C

#B
R
),

a rate of successful fixes on annotated bugs in contracts without
execution errors. When tools correctly fixed annotated bugs but
introduced functional regressions in other parts of a contract, we
considered generated patches to be incorrect.

The results show SmartFix is highly competitive in fixing bugs
compared to the state-of-the art. Specifically, SmartFix was much
more effective on commonly supported classes of bugs (IO, RE,
TX), achieving a success rate of 94.8% (vs. 65.4%) and an accuracy
of 100.0% (vs. 97.1%). Moreover, including EL and SU, which are
hardly supported by existing approaches (e.g., [21, 43, 58]) that rely
on a single repair template for each bug type (Section 2), Smart-
Fix obtained still noticeable results; the success rate is 81.1% and
the accuracy is 96.7%.

In particular, we found SmartFix is far more effective than
sGuard in fixing critical arithmetic overflow bugs (IO) that are
assigned CVE IDs. Concretely, SmartFix fixed 218 CVE-reported
arithmetic bugs safely and correctly, achieving the success rate of
95.6%. By contrast, the success rate of sGuard was only 60.2%, as
the total number of repair attempts was only 103 (the column #G)
out of 170 valid repair targets (the column #B

R). This is because
sGuard relies on a rather restricted fix strategy to reduce false
positives [43] (i.e., to reduce the number of patches that are unnec-
essarily applied to already-safe arithmetic operations). Specifically,
sGuard fixes only IO bugs that have dependencies to external func-
tion calls. Unfortunately, such a restricted strategy can result in
missing opportunities to fix critical arithmetic bugs, as shown in
Table 1. Further note that security disasters can happen due to IO

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Results on fixing annotated bugs in each dataset. #B: the number of annotated bugs in contracts. #BR
: the number of

annotated bugs in contracts that are successfully run by each tool. #G: the number of annotated bugs fixed by each tool. #C: the
number of annotated bugs correctly fixed by each tool. Fix Rate:

#C
#B (end-to-end fix rate on annotated bugs in entire contracts).

Success Rate:
#C
#BR

(fix rate on annotated bugs in contracts without execution errors). Accuracy:
#C
#G .

Bug Type #B

SmartFix sGuard [43]

#B
R

#G #C Fix Rate Success Rate Accuracy #B
R

#G #C Fix Rate Success Rate Accuracy

IO 229 228 218 218 95.2% 95.6% 100.0% 170 103 103 45.0% 60.6% 100.0%
RE 52 51 46 46 88.5% 90.2% 100.0% 33 33 29 55.8% 87.9% 87.9%
TX 12 12 12 12 100.0% 100.0% 100.0% 2 2 2 16.7% 100.0% 100.0%
EL 137 134 83 76 55.5% 56.7% 91.6% n/a n/a n/a n/a n/a n/a
SU 53 51 40 34 64.2% 66.7% 85.0% n/a n/a n/a n/a n/a n/a

IO+RE+TX 293 291 276 276 94.2% 94.8% 100.0% 205 138 134 45.7% 65.4% 97.1%

Total 483 476 399 386 79.9% 81.1% 96.7% - - - - - -

∗ For SmartFix, #G is counted if no alarms are generated by the patch verifier at annotated lines. For sGuard, #G is counted if runtime checks are inserted at
annotated lines (IO), nonReentrant modifiers are inserted in contracts (RE), or annotated lines have been changed by the patches (TX).

bugs irrelevant to external function calls (e.g., CVE-2018-10299).
Unlike sGuard, SmartFix does not rely on such a rather restricted
strategy to reduce false positives, as it can identify where to ap-
ply patches much more accurately (will be discussed shortly with
Table 2) thanks to the verification-based patch validation.

For RE, sGuard incorrectly fixed 4 bugs, where 3 of them were
incorrect as the patches introduced deadcode due to improper over-
laps of nonReentrant modifiers. By contrast, SmartFix did not
generate such incorrect patches thanks to its verification-based
regression detection (Section 3.1.2), achieving 100.0% accuracy.

For EL and SU, SmartFix achieved relatively low fix- and success
rates and accuracy, compared to the numbers for the other types
of bugs; we discuss the reasons in Section 5.5. Nevertheless, we
believe the results are overall encouraging, in that SmartFix is the
first repair tool that can safely fix diverse patterns of access-control
related bugs (EL, SU).

Patch Simplicity. We evaluated the patch simplicity in terms of
the number of inserted runtime checks (Table 2): #BC (the number
of bound checks applied to addition, subtraction, and multiplication
for fixing IO bugs), #NR (the number of nonReentrantmodifiers for
fixing RE bugs). We assess the simplicity in terms of #BC and #NR,
because BC and NR are the two types of additive repair opera-
tors that increase code sizes. Evaluating the patch simplicity is
important, because redundant patches would be undesirable for
developers and they would result in unnecessary payments of gas
fees [43, 57].

Table 2 shows that SmartFix can generate solution contracts
more economically, by producing simpler yet safe patches thanks
to the verification-based patch validation. To make 100 contracts
bug-free, SmartFix used 244 (= 243+1) runtime checks, which
correspond to 26.9% of sGuard. In particular, considering that
sGuard typically fixes fewer IO bugs (i.e., fixes only overflows that
have dependencies to external calls), our result is noteworthy.

Scalability. To obtain the results in Table 1, the average ter-
mination time of SmartFix is the following (excluding runtime

Table 2: Comparison on the patch simplicity. Sol: the num-

ber of solution contracts generated by both tools. #BC: the
number of inserted bound checks. #NR: the number of added

nonReentrantmodifiers.

Dataset Sol

SmartFix sGuard [43] SmartFix
sGuard

#BC #NR #BC #NR #BC+#NR

IO Bench 73 213 0 783 0 27.2%
RE Bench 25 27 1 53 61 24.6%
TX Bench 2 3 0 10 0 30.0%

Total 100 243 1 846 61 26.9%

∗ For sGuard, the contracts in Sol are patched contracts that are proven to
be free from IO, RE, and TX, according to its safety criteria [43].

exception cases): 43m (for all four datasets), 43m (IO Bench), 32m
(RE Bench), 17m (TX Bench), and 51m (EL-SU Bench). sGuard took
much smaller time, as it uses relatively light-weight static analyses:
34s (for three datasets), 39s (IO Bench), 8s (RE Bench), and 5s (TX
Bench). Considering the importance of safe smart contracts and
the benefits of SmartFix (much higher fix- and success rates, sup-
porting more classes of bugs, patch simplicity), we believe its cost
is reasonable.

We also found that SmartFix can be useful for relatively large
contracts too. In particular, SmartFix could fix RE bugs in contracts
consisting of 829 lines and 963 lines. For 65 annotated bugs from 36
contracts with more than 500 lines, the fix- and the success rate of
SmartFix was 46.2% (3065) and 47.6% (3063). The average termination
time for 34 contracts without execution errors was 1h 15 m.

Summary of Comparison. The experimental results show that
SmartFix has two main advantages over sGuard by adopting the
generate-and-verify approach. First, SmartFix can fix wider ranges
of security bugs safely. For example, SmartFix can fix more diverse
patterns of arithmetic bugs and it can support access-control related
bugs (e.g., EL, SU), which could be hardly supported by tools such

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

0 50 100 150 200
generated solution contracts

0

20

40

60

80

100

120

cu
m

ul
at

iv
e

ru
nt

im
e

(h
) Basic

Online
Online+Offline

Figure 4: Comparison between the variants of SmartFix.

as sGuard that rely on a single repair strategy for each bug type.
Second, SmartFix can generate much simpler patches.

Our evaluation also identifies a downside of SmartFix. It could
be much more inefficient than sGuard when generating patches
that are safe by construction. For example, patches that insert run-
time checks for IO bugs are always safe. sGuard is specialized
for producing such patches and therefore fast. On the other hand,
SmartFix attempts to formally prove safety even in this case.

Contract-Level Fixing Results. SmartFix was also effective at
generating solution contracts too; SmartFix achieved a fix rate of
67.6% and an accuracy of 99.2% on the 361 benchmark contracts.

5.3 Impact of Using Statistical Models

To assess the utility of using statistical models (Section 3.2), we
made three variants of SmartFix. Basic indicates SmartFix that
performs the basic generate-and-verify repair; it uses the size-based
cost function in Section 3.1. Online indicates SmartFix without
offline learning; it uses the final cost function in Section 3.2.3 where
𝑀off = ⊥ always. Online+Offline indicates the final version of
SmartFix, which combines all of our techniques. The cactus plot
in Figure 4 compares the performance of the three variants, by
visualizing the number of generated solution contracts (x-axis)
according to the cumulative termination time (y-axis).

The results show that using statistical models is critical for
greatly enhancing the performance of SmartFix. Compared to
our baseline approach (Basic), our techniques based on online and
offline learning collectively improved the contract-level repair ef-
fectiveness by 56.7% (= 246−157

157) in terms of generating solution
contracts. We also found that both online and offline learning is
crucial, as depicted in Figure 4. Although the two enhanced vari-
ants (Online, Online+Offline) were similar in terms of generating
solution contracts (249, 246) within 100 minutes of the termina-
tion budget (Section 5.1), when we counted the number of solution
contracts generated within 30 minutes of termination time, the
performance difference between the variants became more evident:
Basic (89), Online (143), Online+Offline (168).

5.4 Limitations

To inspect room for future improvements, we manually analyzed
why SmartFix failed to fix bugs in our experiments.

Incorrect Patches. SmartFix incorrectly fixed 13 known an-
notated bugs (#G − #C in Table 1), as the patches failed to sat-
isfy contract-specific properties that are unspecified at runtime of
SmartFix. For example, consider the simplified code snippet:
1 modifier onlySettler { require (msg.sender == settler); _; }

2 modifier onlyOwner { require (msg.sender == owner); _; }

3 function settleBet (string randomSeed) onlySettler { ... }

4 function setSettler (address newSettler) onlyOwner {settler = newSettler ;}

5

6 (-) function withdrawFunds(address rcv , uint amt) { // "onlyOwner" removed

7 (+) function withdrawFunds(address rcv , uint amt) onlySettler {

8 rcv.send(amt); } // ether -leak

In the above contract for gambling, settler is responsible for de-
termining the winner of bets made by players (line 3), and owner is
responsible for managing the contract such as designating a new
settler (line 4). In the original contract, the critical statement
(send) at line 8, which sends ethers (amt) of the contract to rcv,
can be executed by any unauthorized user and therefore has the
EL bug. SmartFix produced the above patch using the modifier
onlySettler (line 7), which can be considered vulnerability-free
because settler is an authorized user (hence proven to be safe by
the patch verifier [9, 50]). However, this patch is incorrect, consid-
ering the original contract (the benchmark was made by removing
the modifier onlyOwner in withdrawFunds). To correctly fix these
bugs, SmartFix should be able to distinguish the roles of settler
and owner, and infer that withdrawFunds should be only invoked
by owner not by another trusted user (settler).

Unfixed Bugs. We identified three main reasons on why Smart-
Fix failed to generate patches. First, SmartFix failed due to the
limited performance of the verifier. For example, SmartFix even
could not finish the verification within a verification time budget
for a complex original contract (line 1 in Algorithm 1), causing
the abnormal early termination of the repair procedure (in the im-
plementation, if we fail to obtain VR0 and RR0, we just stop the
execution). Second, SmartFix could not effectively handle rather
a large search space for candidate patches. For example, Smart-
Fix was able to fix only one bug out of the three annotated bugs
for a contract in which 21 patch components were generated to fix
19 potential bugs. Third, SmartFix failed due to the imprecision of
the verifier; even though desired patches have been searched, the
verifier failed to validate their safety.

5.5 Threats to Validity

We discuss potential threats to validity of our experimental re-
sults. First, the four datasets used in our experiments might not
be representative despite our significant effort for the benchmark
construction (Section 5.1); thus, the effectiveness of SmartFix on
other new datasets remains to be seen. Second, we did not conduct
a comprehensive study on the choice of hyperparameter values
(e.g., 𝛾 in Section 3.2, Z3 solving timeout) used in our algorithm;
the efficacy of our techniques might vary if using different values.

6 RELATEDWORK

Repairing Smart Contracts. Compared to recent approaches
for fixing vulnerable smart contracts before they get deployed [21,
43, 57, 58], SmartFix is differentiated in that it achieves high
repairability, full automation, and safety guarantee all at once.

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

sGuard [43] is a tool that aims to make contracts vulnerability-
free. Elysium [21] and SMARTSHIELD [58] are tools that generate
patches at EVM bytecode level, in combination with bug-finders
such as Mythril [4]. A major weakness of them [21, 43, 58] is that
they cannot fix diverse patterns of bugs, as they rely on a single
repair template for each bug type. SCRepair [57], a test-based re-
pair tool, would be an exception from this limitation as it supports
multiple repair strategies by using a genetic search algorithm. How-
ever, unlike SmartFix, SCRepair does not achieve full automation
and patch safety, as it relies on test suites for patch validation.

There are also techniques for patching already-deployed con-
tracts [30, 37, 46]. SmartFix is complementary to these approaches.
For example, for patch validation, EVMPatch [46] uses past transac-
tions as test suites, which would not be available before deployment.
By contrast, SmartFix can safely fix bugs without them.

Repairing Traditional Programs. There are a bunch of prior
works on automatically fixing traditional and typically larger pro-
grams such as C or Java. In particular, our work is closely related
to generate-and-validate approaches [29, 32, 38, 39, 56], which iter-
atively generate candidate patches using search algorithms until
a solution program is found. Our work substantially differs from
theseworks in two aspects. First, whilemost existingworks perform
patch validation using test cases, we perform verification-based
patch validation to guarantee safety of generated patches. Second,
and more importantly, we propose a new learning-based technique
to speed up the repair procedure using statistical models.

Our work is also related to approaches that use sound verifica-
tion techniques [27, 34, 36] for patch validation. MemFix [36] and
SAVER [27] use abstract interpretation [17] specially designed to
safely fix memory errors (e.g., memory leak) in C/C++. By contrast,
we use hoare-style verification techniques [50] to safely fix security
vulnerabilities in smart contracts. Similar to ours, the work in [34]
uses a hoare-style verification tool to guarantee patch correctness
of C programs (assuming functional specifications of programs are
available). The difference is, it uses the verifier’s feedback (the num-
ber of alarms [34]) in the context of genetic programming, while
we leverage the verifier’s feedback for learning statistical models.

Analyzing Smart Contracts. A number of analyzers for smart
contracts have been developed (e.g., [4, 10, 13, 16, 20, 22, 24, 28, 31,
33, 40, 42, 44, 45, 47, 49, 50, 53, 54]). We believe using other tools in
the patch validation could enhance the practicality of SmartFix.
For example, fuzzers (e.g., [16, 24, 28]) would help to filter false
alarms of the patch verifier and thus produce more economical
patches.

7 CONCLUSION

In this paper, we showed that the “generate-and-verify” approach
can be made practical for repairing vulnerable smart contracts. Pre-
vious techniques for automatically repairing smart contracts failed
to achieve high repairability, full automation, or safety guarantee.
The generate-and-verify approach has the potential to overcome
these shortcomings but poses a significant performance challenge.
We presented a learning-based technique to accelerate the approach
using statistical models derived from the verifier’s feedback, and

demonstrated that our enhanced method is highly effective at fixing
five important classes of vulnerabilities in smart contracts.

8 DATA AVAILABILITY

The replication package for this paper, including the source code
of SmartFix and the benchmarks, is publicly available [51].

ACKNOWLEDGMENT

We thank Dooseop Lee for his contribution to the construction
of the RE benchmark. This work was supported by Institute of
Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (No.2020-0-
01337,(SW STAR LAB) Research on Highly-Practical Automated
Software Repair). This work was also supported by Institute of
Information & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government(MSIT) (No.2021-
0-00177,High Assurance of Smart Contract for Secure Software
Development Life Cycle). This work was also supported by Insti-
tute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT)
(No.2022-0-00277, Development of SBOM Technologies for Secur-
ing Software Supply Chains). This research was also supported
by the MSIT(Ministry of Science and ICT), Korea, under the ICT
Creative Consilience program(IITP-2023-2020-0-01819) supervised
by the IITP(Institute for Information & communications Technol-
ogy Planning & Evaluation). This work was also supported by the
National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT)(No.2021R1A5A1021944). This research
was also supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the
Ministry of Education(2020R1A6A3A13068761).

REFERENCES

[1] [n. d.]. 487 smart contracts that contain arithmetic vulnerabilities with assigned
CVE IDs. https://github.com/kupl/VeriSmart-benchmarks/tree/master/benchma
rks/cve. Accessed: August 2023.

[2] [n. d.]. A $50 Million Hack Just Showed That the DAO Was All Too Human.
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/.
Accessed: August 2023.

[3] [n. d.]. Etherscan: The Ethereum Blockchain Explorer. https://etherscan.io/.
Accessed: August 2023.

[4] [n. d.]. Mythril: a security analysis tool for EVM bytecode. https://github.com/C
onsenSys/mythril. Accessed: August 2023.

[5] [n. d.]. pyml: OCaml bindings for Python. https://opam.ocaml.org/packages/pyml.
Accessed: August 2023.

[6] [n. d.]. Solidity Documentation. https://docs.soliditylang.org. Accessed: August
2023.

[7] [n. d.]. The Gihub repository of for the latest version of sGuard. https://github.c
om/duytai/sGuard/tree/643c5f67f21d5a433965218a84ce407d93ccdc23. Accessed:
August 2023.

[8] [n. d.]. The Parity Wallet Hack Explained. https://blog.openzeppelin.com/on-
the-parity-wallet-multisig-hack-405a8c12e8f7/. Accessed: August 2023.

[9] [n. d.]. VeriSmart: a formal verification tool for Solidity smart contracts. https:
//github.com/kupl/VeriSmart-public. Accessed: August 2023.

[10] Leonardo Alt and Christian Reitwiessner. 2018. SMT-Based Verification of Solidity
Smart Contracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, Tiziana Margaria and Bernhard Steffen (Eds.).
Springer International Publishing, Cham, 376–388.

[11] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, andG. Vigna. 2022. SAILFISH: Vetting
Smart Contract State-Inconsistency Bugs in Seconds. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,
1235–1252. https://doi.org/10.1109/SP46214.2022.00072

[12] Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer-Verlag, Berlin, Heidelberg.

https://github.com/kupl/VeriSmart-benchmarks/tree/master/benchmarks/cve
https://github.com/kupl/VeriSmart-benchmarks/tree/master/benchmarks/cve
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://etherscan.io/
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://opam.ocaml.org/packages/pyml
https://docs.soliditylang.org
https://github.com/duytai/sGuard/tree/643c5f67f21d5a433965218a84ce407d93ccdc23
https://github.com/duytai/sGuard/tree/643c5f67f21d5a433965218a84ce407d93ccdc23
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://github.com/kupl/VeriSmart-public
https://github.com/kupl/VeriSmart-public
https://doi.org/10.1109/SP46214.2022.00072

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA So and Oh

[13] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis
Smaragdakis. 2020. Ethainter: A Smart Contract Security Analyzer for Com-
posite Vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 454–469.
https://doi.org/10.1145/3385412.3385990

[14] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[15] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,
Hang Zhu, Gang Chen, Zheyuan He, Yuxing Tang, Xiaodong Lin, and Xiaosong
Zhang. 2020. SODA: A Generic Online Detection Framework for Smart Contracts.
In 27th Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26, 2020. The Internet Society. https:
//www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-
framework-for-smart-contracts/

[16] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with Static
and Dynamic Data-Flow Analyses. In 2021 36th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 227–239. https://doi.org/10.1109/
ASE51524.2021.9678888

[17] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (Los Angeles, California) (POPL
’77). Association for Computing Machinery, New York, NY, USA, 238–252.
https://doi.org/10.1145/512950.512973

[18] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[19] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New
York, NY, USA, 530–541. https://doi.org/10.1145/3377811.3380364

[20] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis
Framework for Smart Contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). 8–15. https:
//doi.org/10.1109/WETSEB.2019.00008

[21] Christof Ferreira Torres, Hugo Jonker, and Radu State. 2022. Elysium: Context-
Aware Bytecode-Level Patching to Automatically Heal Vulnerable Smart Con-
tracts. In Proceedings of the 25th International Symposium on Research in Attacks,
Intrusions and Defenses (Limassol, Cyprus) (RAID ’22). Association for Computing
Machinery, New York, NY, USA, 115–128. https://doi.org/10.1145/3545948.3545
975

[22] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A
Bounded Model Checker for Smart Contracts. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 2757–2774. https://www.us
enix.org/conference/usenixsecurity20/presentation/frank

[23] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (nov 2019), 56–65. https://doi.org/10.114
5/3318162

[24] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application to
Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 531–548. https://doi.org/10.114
5/3319535.3363230

[25] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394.
https://doi.org/10.1145/3243734.3243838

[26] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage. 2021. Survey on
blockchain based smart contracts: Applications, opportunities and challenges.
Journal of Network and Computer Applications 177 (2021), 102857. https://doi.or
g/10.1016/j.jnca.2020.102857

[27] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. 2020. SAVER:
Scalable, Precise, and Safe Memory-Error Repair. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 271–283. https:
//doi.org/10.1145/3377811.3380323

[28] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
Association for Computing Machinery, New York, NY, USA, 259–269. https:
//doi.org/10.1145/3238147.3238177

[29] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for
Computing Machinery, New York, NY, USA, 298–309. https://doi.org/10.1145/32
13846.3213871

[30] Hai Jin, ZeliWang, MingWen,Weiqi Dai, Yu Zhu, and Deqing Zou. 2021. Aroc: An
Automatic Repair Framework for On-chain Smart Contracts. IEEE Transactions
on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3123170

[31] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf

[32] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802–811.

[33] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum
to Automatically Exploit Smart Contracts. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 1317–1333. https:
//www.usenix.org/conference/usenixsecurity18/presentation/krupp

[34] Xuan-Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhancing
Automated ProgramRepair with Deductive Verification. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 428–432. https:
//doi.org/10.1109/ICSME.2016.66

[35] Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in Semantics-Based Automated Program Repair. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 163.
https://doi.org/10.1145/3180155.3182536

[36] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: Static Analysis-
Based Repair of Memory Deallocation Errors for C. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 95–106. https:
//doi.org/10.1145/3236024.3236079

[37] Zecheng Li, Yu Zhou, Songtao Guo, and Bin Xiao. 2021. SolSaviour: A Defending
Framework for Deployed Defective Smart Contracts. InAnnual Computer Security
Applications Conference (Virtual Event, USA) (ACSAC). Association for Computing
Machinery, New York, NY, USA, 748–760. https://doi.org/10.1145/3485832.3488
015

[38] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Ma-
chinery, New York, NY, USA, 166–178. https://doi.org/10.1145/2786805.2786811

[39] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learn-
ing Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 298–312.
https://doi.org/10.1145/2837614.2837617

[40] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 254–269. https:
//doi.org/10.1145/2976749.2978309

[41] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for Simple Program Repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. 448–458. https://doi.org/10.1109/ICSE.2015.63

[42] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,
Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-
Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1186–1189. https://doi.org/10.1109/ASE.2019.00133

[43] T. Duy Nguyen, L. Hong Pham, and J. Sun. 2021. sGUARD: Towards Fixing
Vulnerable Smart Contracts Automatically. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 982–996. https:
//doi.org/10.1109/SP40001.2021.00057

[44] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA)
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 653–663.
https://doi.org/10.1145/3274694.3274743

[45] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev. 2020.
VerX: Safety Verification of Smart Contracts. In 2020 IEEE Symposium on Security

https://doi.org/10.1145/3385412.3385990
https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-framework-for-smart-contracts/
https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-framework-for-smart-contracts/
https://www.ndss-symposium.org/ndss-paper/soda-a-generic-online-detection-framework-for-smart-contracts/
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/3545948.3545975
https://doi.org/10.1145/3545948.3545975
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1145/3377811.3380323
https://doi.org/10.1145/3377811.3380323
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1109/TSE.2021.3123170
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1109/ICSME.2016.66
https://doi.org/10.1109/ICSME.2016.66
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.1145/3485832.3488015
https://doi.org/10.1145/3485832.3488015
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/SP40001.2021.00057
https://doi.org/10.1109/SP40001.2021.00057
https://doi.org/10.1145/3274694.3274743

SmartFix: Fixing Vulnerable Smart Contracts by Accelerating Generate-and-Verify Repair using Statistical Models ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

and Privacy (SP). 414–430. https://doi.org/10.1109/SP.2020.00024
[46] Michael Rodler,Wenting Li, Ghassan O. Karame, and Lucas Davi. 2021. EVMPatch:

Timely and Automated Patching of Ethereum Smart Contracts. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 1289–1306. https:
//www.usenix.org/conference/usenixsecurity21/presentation/rodler

[47] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. 2020.
EThor: Practical and Provably Sound Static Analysis of Ethereum Smart Con-
tracts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). 621–640. https:
//doi.org/10.1145/3372297.3417250

[48] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure
Worse than the Disease? Overfitting in Automated Program Repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 532–543. https://doi.org/10.1145/2786805.2786825

[49] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Effectively
Hunting Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution. In 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association. https://www.usenix.org/conference/usenixse
curity21/presentation/so

[50] S. So, M. Lee, J. Park, H. Lee, and H. Oh. 2020. VeriSmart: A Highly Precise Safety
Verifier for Ethereum Smart Contracts. In 2020 IEEE Symposium on Security and
Privacy (SP). 718–734. https://doi.org/10.1109/SP.2020.00032

[51] Sunbeom So and Hakjoo Oh. 2023. SmartFix: Fixing Vulnerable Smart Contracts
by Accelerating Generate-and-Verify Repair using Statistical Models. https:
//doi.org/10.5281/zenodo.8256377

[52] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. 2016.
Anti-Patterns in Search-Based Program Repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering

(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 727–738. https://doi.org/10.1145/2950290.2950295

[53] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18).
Association for Computing Machinery, New York, NY, USA, 664–676. https:
//doi.org/10.1145/3274694.3274737

[54] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 67–82. https://doi.org/10.1145/3243734.3243780

[55] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting Nondetermin-
istic Payment Bugs in Ethereum Smart Contracts. Proc. ACM Program. Lang. 3,
OOPSLA, Article 189 (oct 2019), 29 pages. https://doi.org/10.1145/3360615

[56] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of
the 31st International Conference on Software Engineering (ICSE ’09). Association
for Computing Machinery, New York, NY, USA, 364–374. https://doi.org/10.110
9/ICSE.2009.5070536

[57] Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury. 2020.
Smart Contract Repair. ACM Trans. Softw. Eng. Methodol. 29, 4, Article 27 (sep
2020), 32 pages. https://doi.org/10.1145/3402450

[58] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.
SMARTSHIELD: Automatic Smart Contract Protection Made Easy. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 23–34. https://doi.org/10.1109/SANER48275.2020.9054825

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/SP.2020.00024
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1145/2786805.2786825
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://www.usenix.org/conference/usenixsecurity21/presentation/so
https://doi.org/10.1109/SP.2020.00032
https://doi.org/10.5281/zenodo.8256377
https://doi.org/10.5281/zenodo.8256377
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3360615
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3402450
https://doi.org/10.1109/SANER48275.2020.9054825

	Abstract
	1 Introduction
	2 Motivating Example
	3 Repair Algorithm
	3.1 Basic Generate-and-Verify Repair
	3.2 Guiding Repair using Statistical Models
	3.3 Applicability to Other Types of Bugs

	4 Implementation and Optimization
	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of SmartFix
	5.3 Impact of Using Statistical Models
	5.4 Limitations
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	8 Data Availability
	References

