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1 PATCH COMPONENT EXTRACTION RULES
(SECTION 3.1.1)

Given an original contract 𝑠0 to repair and its vulnerability report

VR0, Extract(𝑠0,VR0) outputs 𝐶 = 𝐶IO ∪𝐶RE ∪𝐶EL ∪𝐶SU ∪𝐶TX,

where each 𝐶𝑣 is a set of patch components for fixing bugs whose

type is 𝑣 (Section 3.1.1). For simplicity, we focus on explaining

representative rules for each bug type.

𝐶IO is obtained by adding a corresponding guard statement right

before each reported line (e.g., Insert(𝑙, require(a + b ≥ a))) or
by changing comparison operators within functions that contain

reported lines using the Rep template. While reasons for IO bugs

would be mostly due to missing runtime checks, we also support

changes of binary relations, because IO bugs may happen due to

flawed guards as well (e.g., CVE-2018-11411, Figure 2).

𝐶SU is obtained as follows for rectifying faulty access controls:

adding authority guards to functions that contain lines reported

to be vulnerable to SU, adding authority guards to functions that

contain assignments to address-typed l-values, negating conditions

on address-typed expressions in modifiers whose address-typed ex-

pressions are used, and changing functions that may be mistakenly

named to constructors using the ToCnstr template.

𝐶EL is obtained in a similar way to 𝐶SU as root causes of EL and

SU are often similar, but we consider one more repair template to

handle cases unrelated to flawed access controls.
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𝐶TX is obtained by replacing tx.origin by msg.sender in func-

tions (or modifiers) that contain lines reported to be vulnerable;

it is recommended to use msg.sender instead of tx.origin for

authorizing accounts [3].

𝐶RE is obtained based on two well-known schemes [1, 2] that

aim to prevent RE bugs. The first scheme is to make all functions

comply with so-called checks-effects-interactions pattern [1, 2].

When generating patch components based on this scheme, we use

Move template in order to move assignments, which are behind

call statements, in front of call statements. The second scheme

is the mutex-based scheme [2], where we apply nonReentrant
modifiers to functions to prevent reentrancy itself. When generat-

ing patch components based on the second scheme, we consider

multiple groups of functions to apply nonReentrant modifiers.

This is because relying on only one group (i.e., a single strategy)

is more likely to generate incorrect patches. For example, if we

simply add nonReentrant modifiers to all functions for fixing RE
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E.g., https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/access_c

ontrol/wallet_02_refund_nosub.sol

bugs, a patched contract may contain deadcode (e.g., the contract

in [2], which contains withdraw and getFirstWithdrawalBonus
functions). Examples of function groups include: public/external

functions that contain external calls or may manipulate state vari-

ables, and public/external functions that do not contain internal

function calls among the functions in the previous group.

2 FILTERING BENIGN ALARMS (SECTION 4)
Filtering Benign IO Alarms. We ignore benign IO alarms via

pattern matching. For example, we consider the addition at line 7
′

in Figure 2 is benign; even if the overflow occurs, it does not affect

changes of global states and the execution is properly handled (i.e.,

terminated by return false).

Filtering Benign RE Alarms. We designed a procedure for

postprocessing RE-related alarms raised by VeriSmart [4, 5]. The

latest VeriSmart [4] detects two types of RE bugs: REeth (reports

alarms if ethers can be stolen due to reentrancy), andREstate (reports
alarms if states can be modified by untrusted users in reentering

executions). However, we found that a contract that is safe w.r.t.

either of the two safety conditions is often safe from vulnerabilities

due to reentrancy. For example, the second code snippet in [2],

which is safe w.r.t. REeth but unsafe w.r.t. REstate (i.e., the reentrancy
itself is possible), does not have reentrancy vulnerabilities.

Based on the observation, given two types of RE-related alarms

(REeth, REstate) raised by VeriSmart, we postprocess them to pro-

duce a final vulnerability report (VR) as follows.

• If there were non-zero queries (verification targets) for

REstate and all of their safety is proven, we do not include

RE alarms in VR (i.e., we consider that the analyzed contract

is safe from RE).
• If there were non-zero queries for REeth and all of their

safety is proven, we do not include RE alarms in VR.
• If there were non-zero queries for REeth and some of their

safety is not proven, we report REeth alarms as RE alarms;

in this case, we exclude REstate alarms, in order to avoid to

consider fixing the other types of bugs as a minor impact

when computing safety scores (Section 3.2).

• Otherwise, we report REstate alarms, if any, as RE alarms.

Note that, following the above procedure, SmartFix guarantees

patch safety for RE, in that the safety of output patches is formally

verified for at least one kind of safety conditions for RE (the first

two cases).

https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/access_control/wallet_02_refund_nosub.sol
https://github.com/smartbugs/smartbugs-curated/blob/main/dataset/access_control/wallet_02_refund_nosub.sol
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3 BUG-INJECTION PATTERNS FOR RE AND
TX BENCHMARKS (SECTION 5.1)

We describe bug-injection patterns for constructing RE Bench and

TX Bench (Section 5.1). We crafted our benchmarks by applying

these patterns to deployed smart contracts. When necessary, we

applied multiple patterns to a contract.

3.1 RE Bench

Pattern 1. Changing Order. We inject RE vulnerabilities by

moving statements, which may alter global states, behind external

calls. This pattern is for breaking checks-effects-interactions pat-

tern [1, 2]. An example is the following, where the statement at

line 3 is moved to line 4
′
.

1 function withdraw(uint _amount) {

2 require(balances[msg.sender] >= _amount);

3 (-) balances[msg.sender] -= _amount;

4 msg.sender.call.value(_amount)();

4’ (+) balances[msg.sender] -= _amount;

5 }

Pattern 2. Removing Mutex-Related Conditionals. We re-

move mutex-related modifiers for preventing RE. An example is

the following.

1 (-) function withdraw(uint _amount) nonReentrant {

1’ (+) function withdraw(uint _amount) {

2 require(balances[msg.sender] >= _amount);

3 msg.sender.call.value(_amount)();

4 balances[msg.sender] -= _amount;

5 }

Pattern 3. Replacing Statements for Sending Ethers. Given a

transfer or a send statement for transferring ethers, we replace

each of them with a call statement that is another one for send-

ing ethers, because reentrancy attacks by transfer and send are
currently hardly possible due to the gas limit for them. A mutation

example is the following.

1 function withdraw(uint _amount) {

2 require(balances[msg.sender] >= _amount);

3 (-) msg.sender.transfer(_amount);

3’ (+) msg.sender.call.value(_amount)();

4 balances[msg.sender] -= _amount;

5 }

3.2 TX Bench

Since TX happens when tx.origin (the initial transaction sender

in a call-chain) instead of msg.sender (the immediate transaction

sender) is used to recognize certified users, we inject TX vulnera-

bilities by replacing msg.sender by tx.origin in statements for

identifying privileged users. An example is the following.

1 modifier onlyOwner {

2 (-) require (msg.sender == owner);

2’ (+) require (tx.origin == owner);

3 _;

4 }
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